hf-docs / backend /semantic_search.py
msh2481
Step 3
ef93aa3
raw
history blame
1.18 kB
import lancedb # type: ignore
import os
import gradio as gr # type: ignore
from sentence_transformers import SentenceTransformer, CrossEncoder # type: ignore
db = lancedb.connect(".lancedb")
TABLE = db.open_table(os.getenv("TABLE_NAME"))
VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector")
TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text")
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32))
RERANKER = os.getenv("RERANKER", "cross-encoder/ms-marco-MiniLM-L-6-v2")
retriever = SentenceTransformer(os.getenv("EMB_MODEL"))
reranker = CrossEncoder(RERANKER)
def retrieve(query, k, rerank_factor=3):
query_vec = retriever.encode(query)
try:
documents = (
TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN)
.limit(k * rerank_factor)
.to_list()
)
documents = [doc[TEXT_COLUMN] for doc in documents]
scores = reranker.predict([(query, doc) for doc in documents])
best_scores_and_documents = sorted(zip(scores, documents), reverse=True)[:k]
best_documents = [doc[1] for doc in best_scores_and_documents]
return best_documents
except Exception as e:
raise gr.Error(str(e))