import os from glob import glob from pathlib import Path import torch import logging import argparse import torch import numpy as np from sklearn.cluster import KMeans, MiniBatchKMeans import tqdm logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) import time import random def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False): logger.info(f"Loading features from {in_dir}") features = [] nums = 0 for path in tqdm.tqdm(in_dir.glob("*.soft.pt")): features.append(torch.load(path).squeeze(0).numpy().T) # print(features[-1].shape) features = np.concatenate(features, axis=0) print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype) features = features.astype(np.float32) logger.info(f"Clustering features of shape: {features.shape}") t = time.time() if use_minibatch: kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features) else: kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features) print(time.time()-t, "s") x = { "n_features_in_": kmeans.n_features_in_, "_n_threads": kmeans._n_threads, "cluster_centers_": kmeans.cluster_centers_, } print("end") return x if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=Path, default="dataset/44k", help='path of training data directory') parser.add_argument('--output', type=Path, default="logs/44k", help='path of model output directory') args = parser.parse_args() checkpoint_dir = args.output dataset = args.dataset n_clusters = 10000 ckpt = {} for spk in os.listdir(dataset): if os.path.isdir(dataset/spk): print(f"train kmeans for {spk}...") in_dir = dataset/spk x = train_cluster(in_dir, n_clusters, verbose=False) ckpt[spk] = x checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt" checkpoint_path.parent.mkdir(exist_ok=True, parents=True) torch.save( ckpt, checkpoint_path, ) # import cluster # for spk in tqdm.tqdm(os.listdir("dataset")): # if os.path.isdir(f"dataset/{spk}"): # print(f"start kmeans inference for {spk}...") # for feature_path in tqdm.tqdm(glob(f"dataset/{spk}/*.discrete.npy", recursive=True)): # mel_path = feature_path.replace(".discrete.npy",".mel.npy") # mel_spectrogram = np.load(mel_path) # feature_len = mel_spectrogram.shape[-1] # c = np.load(feature_path) # c = utils.tools.repeat_expand_2d(torch.FloatTensor(c), feature_len).numpy() # feature = c.T # feature_class = cluster.get_cluster_result(feature, spk) # np.save(feature_path.replace(".discrete.npy", ".discrete_class.npy"), feature_class)