import gradio as gr from fastai.vision.all import * import skimage learner_inf = load_learner('model.pkl') labels = learner_inf.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learner_inf.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Cat vs. Dog Classifier" description = "A Cat/Dog Classfier trained on random images obtained from DuckDuckGo. Used as a demo for Gradio + HuggingFace." interpretation='default' gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=2), title=title, description=description, interpretation=interpretation ).launch()