Spaces:
Build error
Build error
File size: 11,440 Bytes
8744085 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import base64
import re
from collections import OrderedDict
from typing import Callable, Dict, List
import altair as alt
import numpy as np
import pandas as pd
import spacy
import streamlit as st
from pandas.core.series import Series
from PIL import Image
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import resample
from stqdm import stqdm
from textacy.preprocessing import make_pipeline, normalize, remove, replace
from .configs import Languages, ModelConfigs, SupportedFiles
stqdm.pandas()
@st.cache
def get_logo(path):
return Image.open(path)
# @st.cache(suppress_st_warning=True)
def read_file(uploaded_file) -> pd.DataFrame:
file_type = uploaded_file.name.split(".")[-1]
if file_type in set(i.name for i in SupportedFiles):
read_f = SupportedFiles[file_type].value[0]
return read_f(uploaded_file, dtype=str)
else:
st.error("File type not supported")
def download_button(dataframe: pd.DataFrame, name: str):
csv = dataframe.to_csv(index=False)
# some strings <-> bytes conversions necessary here
b64 = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64}" download="{name}.csv">Download</a>'
st.write(href, unsafe_allow_html=True)
def encode(text: pd.Series, labels: pd.Series):
tfidf_vectorizer = TfidfVectorizer(
input="content", # default: file already in memory
encoding="utf-8", # default
decode_error="strict", # default
strip_accents=None, # do nothing
lowercase=False, # do nothing
preprocessor=None, # do nothing - default
tokenizer=None, # default
stop_words=None, # do nothing
analyzer="word",
ngram_range=(1, 3), # maximum 3-ngrams
min_df=0.001,
max_df=0.75,
sublinear_tf=True,
)
label_encoder = LabelEncoder()
with st.spinner("Encoding text using TF-IDF and Encoding labels"):
X = tfidf_vectorizer.fit_transform(text.values)
y = label_encoder.fit_transform(labels.values)
return {
"X": X,
"y": y,
"X_names": np.array(tfidf_vectorizer.get_feature_names()),
"y_names": label_encoder.classes_,
}
def wordifier(X, y, X_names: List[str], y_names: List[str], configs=ModelConfigs):
n_instances, n_features = X.shape
n_classes = len(y_names)
# NOTE: the * 10 / 10 trick is to have "nice" round-ups
sample_fraction = np.ceil((n_features / n_instances) * 10) / 10
sample_size = min(
# this is the maximum supported
configs.MAX_SELECTION.value,
# at minimum you want MIN_SELECTION but in general you want
# n_instances * sample_fraction
max(configs.MIN_SELECTION.value, int(n_instances * sample_fraction)),
# however if previous one is bigger the the available instances take
# the number of available instances
n_instances,
)
# TODO: might want to try out something to subsample features at each iteration
# initialize coefficient matrices
pos_scores = np.zeros((n_classes, n_features), dtype=int)
neg_scores = np.zeros((n_classes, n_features), dtype=int)
with st.spinner("Wordifying!"):
for _ in stqdm(range(configs.NUM_ITERS.value)):
# run randomized regression
clf = LogisticRegression(
penalty="l1",
C=configs.PENALTIES.value[np.random.randint(len(configs.PENALTIES.value))],
solver="liblinear",
multi_class="auto",
max_iter=500,
class_weight="balanced",
)
# sample indices to subsample matrix
selection = resample(np.arange(n_instances), replace=True, stratify=y, n_samples=sample_size)
# fit
try:
clf.fit(X[selection], y[selection])
except ValueError:
continue
# record coefficients
if n_classes == 2:
pos_scores[1] = pos_scores[1] + (clf.coef_ > 0.0)
neg_scores[1] = neg_scores[1] + (clf.coef_ < 0.0)
pos_scores[0] = pos_scores[0] + (clf.coef_ < 0.0)
neg_scores[0] = neg_scores[0] + (clf.coef_ > 0.0)
else:
pos_scores += clf.coef_ > 0
neg_scores += clf.coef_ < 0
# normalize
pos_scores = pos_scores / configs.NUM_ITERS.value
neg_scores = neg_scores / configs.NUM_ITERS.value
# get only active features
pos_positions = np.where(pos_scores >= configs.SELECTION_THRESHOLD.value, pos_scores, 0)
neg_positions = np.where(neg_scores >= configs.SELECTION_THRESHOLD.value, neg_scores, 0)
# prepare DataFrame
pos = [(X_names[i], pos_scores[c, i], y_names[c]) for c, i in zip(*pos_positions.nonzero())]
neg = [(X_names[i], neg_scores[c, i], y_names[c]) for c, i in zip(*neg_positions.nonzero())]
posdf = pd.DataFrame(pos, columns="word score label".split()).sort_values(["label", "score"], ascending=False)
negdf = pd.DataFrame(neg, columns="word score label".split()).sort_values(["label", "score"], ascending=False)
return posdf, negdf
# more [here](https://github.com/fastai/fastai/blob/master/fastai/text/core.py#L42)
# and [here](https://textacy.readthedocs.io/en/latest/api_reference/preprocessing.html)
_re_space = re.compile(" {2,}")
def normalize_useless_spaces(t):
return _re_space.sub(" ", t)
_re_rep = re.compile(r"(\S)(\1{2,})")
def normalize_repeating_chars(t):
def _replace_rep(m):
c, cc = m.groups()
return c
return _re_rep.sub(_replace_rep, t)
_re_wrep = re.compile(r"(?:\s|^)(\w+)\s+((?:\1\s+)+)\1(\s|\W|$)")
def normalize_repeating_words(t):
def _replace_wrep(m):
c, cc, e = m.groups()
return c
return _re_wrep.sub(_replace_wrep, t)
class TextPreprocessor:
def __init__(
self, language: str, cleaning_steps: List[str], lemmatizer_when: str = "last", remove_stop: bool = True
) -> None:
# prepare lemmatizer
self.language = language
self.nlp = spacy.load(Languages[language].value, exclude=["parser", "ner", "pos", "tok2vec"])
self.lemmatizer_when = self._lemmatization_options().get(lemmatizer_when, None)
self.remove_stop = remove_stop
self._lemmatize = self._get_lemmatizer()
# prepare cleaning
self.cleaning_steps = [
self._cleaning_options()[step] for step in cleaning_steps if step in self._cleaning_options()
]
self.cleaning_pipeline = make_pipeline(*self.cleaning_steps) if self.cleaning_steps else lambda x: x
def _get_lemmatizer(self) -> Callable:
"""Return the correct spacy Doc-level lemmatizer"""
if self.remove_stop:
def lemmatizer(doc: spacy.tokens.doc.Doc) -> str:
"""Lemmatizes spacy Doc and removes stopwords"""
return " ".join([t.lemma_ for t in doc if t.lemma_ != "-PRON-" and not t.is_stop])
else:
def lemmatizer(doc: spacy.tokens.doc.Doc) -> str:
"""Lemmatizes spacy Doc"""
return " ".join([t.lemma_ for t in doc if t.lemma_ != "-PRON-"])
return lemmatizer
@staticmethod
def _lemmatization_options() -> Dict[str, str]:
return {
"Before preprocessing": "first",
"After preprocessing": "last",
"Never! Let's do it quick and dirty": None,
}
def lemmatizer(self, series: pd.Series) -> pd.Series:
"""
Apply spacy pipeline to transform string to spacy Doc and applies lemmatization
"""
res = []
pbar = stqdm(total=len(series))
for doc in self.nlp.pipe(series, batch_size=500):
res.append(self._lemmatize(doc))
pbar.update(1)
pbar.close()
return pd.Series(res)
@staticmethod
def _cleaning_options():
"""Returns available cleaning steps in order"""
return OrderedDict(
[
("lower", lambda x: x.lower()),
("normalize_unicode", normalize.unicode),
("normalize_bullet_points", normalize.bullet_points),
("normalize_hyphenated_words", normalize.hyphenated_words),
("normalize_quotation_marks", normalize.quotation_marks),
("normalize_whitespace", normalize.whitespace),
("remove_accents", remove.accents),
("remove_brackets", remove.brackets),
("remove_html_tags", remove.html_tags),
("remove_punctuation", remove.punctuation),
("replace_currency_symbols", replace.currency_symbols),
("replace_emails", replace.emails),
("replace_emojis", replace.emojis),
("replace_hashtags", replace.hashtags),
("replace_numbers", replace.numbers),
("replace_phone_numbers", replace.phone_numbers),
("replace_urls", replace.urls),
("replace_user_handles", replace.user_handles),
("normalize_useless_spaces", normalize_useless_spaces),
("normalize_repeating_chars", normalize_repeating_chars),
("normalize_repeating_words", normalize_repeating_words),
("strip", lambda x: x.strip()),
]
)
def fit_transform(self, series: pd.Series) -> Series:
"""Applies text preprocessing"""
if self.lemmatizer_when == "first":
with st.spinner("Lemmatizing"):
series = self.lemmatizer(series)
with st.spinner("Cleaning"):
series = series.progress_map(self.cleaning_pipeline)
if self.lemmatizer_when == "last":
with st.spinner("Lemmatizing"):
series = self.lemmatizer(series)
return series
def plot_labels_prop(data: pd.DataFrame, label_column: str):
source = data["label"].value_counts().reset_index().rename(columns={"index": "Labels", label_column: "Counts"})
source["Proportions"] = ((source["Counts"] / source["Counts"].sum()).round(3) * 100).map("{:,.2f}".format) + "%"
bars = (
alt.Chart(source)
.mark_bar()
.encode(
x="Labels:O",
y="Counts:Q",
)
)
text = bars.mark_text(align="center", baseline="middle", dy=15).encode(text="Proportions:O")
return (bars + text).properties(height=300)
def plot_nchars(data: pd.DataFrame, text_column: str):
source = data[text_column].str.len().to_frame()
plot = (
alt.Chart(source)
.mark_bar()
.encode(
alt.X(f"{text_column}:Q", bin=True, axis=alt.Axis(title="# chars per text")),
alt.Y("count()", axis=alt.Axis(title="")),
)
)
return plot.properties(height=300)
def plot_score(data: pd.DataFrame, label_col: str, label: str):
source = data.loc[data[label_col] == label].sort_values("score", ascending=False).head(100)
plot = (
alt.Chart(source)
.mark_bar()
.encode(
y=alt.Y("word:O", sort="-x"),
x="score:Q",
)
)
return plot.properties(height=max(30 * source.shape[0], 50))
|