Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torchvision.transforms as transforms | |
from torchvision import models | |
from PIL import Image | |
# Load a pre-trained ResNet model | |
model = models.resnet50(pretrained=True) | |
model.eval() | |
transform = transforms.Compose([transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225])]) | |
# Define a function to classify an image | |
def classify_image(input_image): | |
img = Image.open(input_image) | |
img = transform(img).unsqueeze(0) | |
with torch.no_grad(): | |
outputs = model(img) | |
_, predicted_class = outputs.max(1) | |
return class_names[predicted_class.item()] | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.inputs.Image(type="file", label="Upload an Image"), | |
outputs=gr.outputs.Textbox(label="Predicted Class"), | |
live=True, | |
theme="default", | |
title="Image Classification with ResNet", | |
) | |
# Launch the Gradio interface | |
iface.launch() | |