import os import json import shutil import subprocess import requests import tarfile from pathlib import Path import soundfile as sf import sherpa_onnx import numpy as np models = [ ['mms fa','https://huggingface.co/willwade/mms-tts-multilingual-models-onnx/resolve/main/fas',"🌠 راد",'https://huggingface.co/facebook/mms-tts-fas'], ['coqui-vits-female1-karim23657','https://huggingface.co/karim23657/persian-tts-vits/tree/main/persian-tts-female1-vits-coqui',"🌺 نگار",'https://huggingface.co/Kamtera/persian-tts-female1-vits'], ['coqui-vits-male1-karim23657','https://huggingface.co/karim23657/persian-tts-vits/tree/main/persian-tts-male1-vits-coqui',"🌟 آرش",'https://huggingface.co/Kamtera/persian-tts-male1-vits'], ['coqui-vits-male-karim23657','https://huggingface.co/karim23657/persian-tts-vits/tree/main/male-male-coqui-vits',"🦁 کیان",'https://huggingface.co/Kamtera/persian-tts-male-vits'], ['coqui-vits-female-karim23657','https://huggingface.co/karim23657/persian-tts-vits/tree/main/female-female-coqui-vits',"🌷 مهتاب",'https://huggingface.co/Kamtera/persian-tts-female-vits'], ['coqui-vits-female-GPTInformal-karim23657','https://huggingface.co/karim23657/persian-tts-vits/tree/main/female-GPTInformal-coqui-vits',"🌼 شیوا",'https://huggingface.co/karim23657/persian-tts-female-GPTInformal-Persian-vits'], ['coqui-vits-male-SmartGitiCorp','https://huggingface.co/karim23657/persian-tts-vits/tree/main/male-SmartGitiCorp-coqui-vits',"🚀 بهمن",'https://huggingface.co/SmartGitiCorp/persian_tts_vits'], ['vits-piper-fa-ganji','https://huggingface.co/karim23657/persian-tts-vits/tree/main/vits-piper-fa-ganji',"🚀 برنا",'https://huggingface.co/SadeghK/persian-text-to-speech'], ['vits-piper-fa-ganji-adabi','https://huggingface.co/karim23657/persian-tts-vits/tree/main/vits-piper-fa-ganji-adabi',"🚀 برنا-1",'https://huggingface.co/SadeghK/persian-text-to-speech'], ['vits-piper-fa-gyro-medium','https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-fa_IR-gyro-medium.tar.bz2',"💧 نیما",'https://huggingface.co/gyroing/Persian-Piper-Model-gyro'], ['piper-fa-amir-medium','https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-fa_IR-amir-medium.tar.bz2',"⚡️ آریا",'https://huggingface.co/SadeghK/persian-text-to-speech'], ['vits-mimic3-fa-haaniye_low','https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-mimic3-fa-haaniye_low.tar.bz2',"🌹 ریما",'https://github.com/MycroftAI/mimic3'], ['vits-piper-fa_en-rezahedayatfar-ibrahimwalk-medium','https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-fa_en-rezahedayatfar-ibrahimwalk-medium.tar.bz2',"🌠 پیام",'https://huggingface.co/mah92/persian-english-piper-tts-model'], ] def download_and_extract_model(url, destination): """Download and extract the model files.""" print(f"Downloading from URL: {url}") print(f"Destination: {destination}") # Convert Hugging Face URL format if needed if "huggingface.co" in url: # Replace /tree/main/ with /resolve/main/ for direct file download base_url = url.replace("/tree/main/", "/resolve/main/") model_id = base_url.split("/")[-1] # Check if this is an MMS model is_mms_model = True if is_mms_model: # MMS models have both model.onnx and tokens.txt model_url = f"{base_url}/model.onnx" tokens_url = f"{base_url}/tokens.txt" # Download model.onnx print("Downloading model.onnx...") model_path = os.path.join(destination, "model.onnx") response = requests.get(model_url, stream=True) if response.status_code != 200: raise Exception(f"Failed to download model from {model_url}. Status code: {response.status_code}") total_size = int(response.headers.get('content-length', 0)) block_size = 8192 downloaded = 0 print(f"Total size: {total_size / (1024*1024):.1f} MB") with open(model_path, "wb") as f: for chunk in response.iter_content(chunk_size=block_size): if chunk: f.write(chunk) downloaded += len(chunk) if total_size > 0: percent = int((downloaded / total_size) * 100) if percent % 10 == 0: print(f" {percent}%", end="", flush=True) print("\nModel download complete") # Download tokens.txt print("Downloading tokens.txt...") tokens_path = os.path.join(destination, "tokens.txt") response = requests.get(tokens_url, stream=True) if response.status_code != 200: raise Exception(f"Failed to download tokens from {tokens_url}. Status code: {response.status_code}") with open(tokens_path, "wb") as f: f.write(response.content) print("Tokens download complete") return else: # Other models are stored as tar.bz2 files url = f"{base_url}.tar.bz2" # Try the URL response = requests.get(url, stream=True) if response.status_code != 200: raise Exception(f"Failed to download model from {url}. Status code: {response.status_code}") # Check if this is a Git LFS file pointer content_start = response.content[:100].decode('utf-8', errors='ignore') if content_start.startswith('version https://git-lfs.github.com/spec/v1'): raise Exception(f"Received Git LFS pointer instead of file content from {url}") # Create model directory if it doesn't exist os.makedirs(destination, exist_ok=True) # For non-MMS models, handle tar.bz2 files tar_path = os.path.join(destination, "model.tar.bz2") # Download the file print("Downloading model archive...") response = requests.get(url, stream=True) total_size = int(response.headers.get('content-length', 0)) block_size = 8192 downloaded = 0 print(f"Total size: {total_size / (1024*1024):.1f} MB") with open(tar_path, "wb") as f: for chunk in response.iter_content(chunk_size=block_size): if chunk: f.write(chunk) downloaded += len(chunk) if total_size > 0: percent = int((downloaded / total_size) * 100) if percent % 10 == 0: print(f" {percent}%", end="", flush=True) print("\nDownload complete") # Extract the tar.bz2 file print(f"Extracting {tar_path} to {destination}") try: with tarfile.open(tar_path, "r:bz2") as tar: tar.extractall(path=destination) os.remove(tar_path) print("Extraction complete") except Exception as e: print(f"Error during extraction: {str(e)}") raise print("Contents of destination directory:") for root, dirs, files in os.walk(destination): print(f"\nDirectory: {root}") if dirs: print(" Subdirectories:", dirs) if files: print(" Files:", files) def dl_espeak_data(): # Download the file tar_path='espeak-ng-data.tar.bz2' print("Downloading model archive...") response = requests.get('https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2', stream=True) total_size = int(response.headers.get('content-length', 0)) block_size = 8192 downloaded = 0 print(f"Total size: {total_size / (1024*1024):.1f} MB") with open(tar_path, "wb") as f: for chunk in response.iter_content(chunk_size=block_size): if chunk: f.write(chunk) downloaded += len(chunk) if total_size > 0: percent = int((downloaded / total_size) * 100) if percent % 10 == 0: print(f" {percent}%", end="", flush=True) print("\nDownload complete") # Extract the tar.bz2 file destination=os.path.dirname(os.path.abspath(__file__)) print(f"Extracting {tar_path} to {destination}") try: with tarfile.open(tar_path, "r:bz2") as tar: tar.extractall(path=destination) os.remove(tar_path) print("Extraction complete") except Exception as e: print(f"Error during extraction: {str(e)}") raise print("Contents of destination directory:") for root, dirs, files in os.walk(destination): print(f"\nDirectory: {root}") if dirs: print(" Subdirectories:", dirs) if files: print(" Files:", files) dl_espeak_data() def find_model_files(model_dir): """Find model files in the given directory and its subdirectories.""" model_files = {} # Check if this is an MMS model is_mms = True for root, _, files in os.walk(model_dir): for file in files: file_path = os.path.join(root, file) # Model file if file.endswith('.onnx'): model_files['model'] = file_path # Tokens file elif file == 'tokens.txt': model_files['tokens'] = file_path # Lexicon file (only for non-MMS models) elif file == 'lexicon.txt' and not is_mms: model_files['lexicon'] = file_path # Create empty lexicon file if needed (only for non-MMS models) if not is_mms and 'model' in model_files and 'lexicon' not in model_files: model_dir = os.path.dirname(model_files['model']) lexicon_path = os.path.join(model_dir, 'lexicon.txt') with open(lexicon_path, 'w', encoding='utf-8') as f: pass # Create empty file model_files['lexicon'] = lexicon_path return model_files if 'model' in model_files else {} def generate_audio(text, model_info): """Generate audio from text using the specified model.""" try: model_dir = os.path.join("./models", model_info) print(f"\nLooking for model in: {model_dir}") # Download model if it doesn't exist if not os.path.exists(model_dir): print(f"Model directory doesn't exist, downloading {model_info}...") os.makedirs(model_dir, exist_ok=True) for i in models: if model_info == i[2]: model_url=i[1] download_and_extract_model(model_url, model_dir) print(f"Contents of {model_dir}:") for item in os.listdir(model_dir): item_path = os.path.join(model_dir, item) if os.path.isdir(item_path): print(f" Directory: {item}") print(f" Contents: {os.listdir(item_path)}") else: print(f" File: {item}") # Find and validate model files model_files = find_model_files(model_dir) if not model_files or 'model' not in model_files: raise ValueError(f"Could not find required model files in {model_dir}") print("\nFound model files:") print(f"Model: {model_files['model']}") print(f"Tokens: {model_files.get('tokens', 'Not found')}") print(f"Lexicon: {model_files.get('lexicon', 'Not required for MMS')}\n") # Check if this is an MMS model is_mms = 'mms' in os.path.basename(model_dir).lower() # Create configuration based on model type if is_mms: if 'tokens' not in model_files or not os.path.exists(model_files['tokens']): raise ValueError("tokens.txt is required for MMS models") # MMS models use tokens.txt and no lexicon vits_config = sherpa_onnx.OfflineTtsVitsModelConfig( model_files['model'], # model '', # lexicon model_files['tokens'], # tokens '', # data_dir '', # dict_dir 0.667, # noise_scale 0.8, # noise_scale_w 1.0 # length_scale ) else: # Non-MMS models use lexicon.txt if 'tokens' not in model_files or not os.path.exists(model_files['tokens']): raise ValueError("tokens.txt is required for VITS models") # Set data dir if it exists espeak_data = os.path.join(os.path.dirname(model_files['model']), 'espeak-ng-data') data_dir = espeak_data if os.path.exists(espeak_data) else 'espeak-ng-data' # Get lexicon path if it exists lexicon = model_files.get('lexicon', '') if os.path.exists(model_files.get('lexicon', '')) else '' # Create VITS model config vits_config = sherpa_onnx.OfflineTtsVitsModelConfig( model_files['model'], # model lexicon, # lexicon model_files['tokens'], # tokens data_dir, # data_dir '', # dict_dir 0.667, # noise_scale 0.8, # noise_scale_w 1.0 # length_scale ) # Create the model config with VITS model_config = sherpa_onnx.OfflineTtsModelConfig() model_config.vits = vits_config # Create TTS configuration config = sherpa_onnx.OfflineTtsConfig( model=model_config, max_num_sentences=2 ) # Initialize TTS engine tts = sherpa_onnx.OfflineTts(config) # Generate audio audio_data = tts.generate(text) # Ensure we have valid audio data if audio_data is None or len(audio_data.samples) == 0: raise ValueError("Failed to generate audio - no data generated") # Convert samples list to numpy array and normalize audio_array = np.array(audio_data.samples, dtype=np.float32) if np.any(audio_array): # Check if array is not all zeros audio_array = audio_array / np.abs(audio_array).max() else: raise ValueError("Generated audio is empty") # Return in Gradio's expected format (numpy array, sample rate) return (audio_array, audio_data.sample_rate) except Exception as e: error_msg = str(e) # Check for OOV or token conversion errors if "out of vocabulary" in error_msg.lower() or "token" in error_msg.lower(): error_msg = f"Text contains unsupported characters: {error_msg}" print(f"Error generating audio: {error_msg}") print(f"Error in TTS generation: {error_msg}") raise def tts_interface(selected_model, text, status_output): try: if not text.strip(): return None, "Please enter some text" model_id = selected_model # Store original text for status message original_text = text try: # Update status with language info voice_name = model_id status = f"Generating speech using {voice_name} ..." # Generate audio audio_data, sample_rate = generate_audio(text, model_id) # Include translation info in final status if text was actually translated final_status = f"Generated speech using {voice_name}" final_status += f"\nText: '{text}'" return (sample_rate, audio_data), final_status except ValueError as e: # Handle known errors with user-friendly messages error_msg = str(e) if "cannot process some words" in error_msg.lower(): return None, error_msg return None, f"Error: {error_msg}" except Exception as e: print(f"Error in TTS generation: {str(e)}") error_msg = str(e) return None, f"Error: {error_msg}"