from transformers import pipeline from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image as img import numpy as np import gradio as gr featureextractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224') model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224') def classify(input_img): filename = input_img imagearray = input_img inputs = featureextractor(images = imagearray, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() return model.config.id2label[predicted_class_idx] demo = gr.Interface(fn=classify, inputs="image", outputs="text") demo.launch()