Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import cv2
|
| 3 |
+
import tempfile
|
| 4 |
+
import numpy as np
|
| 5 |
+
from ultralytics import YOLO, solutions
|
| 6 |
+
|
| 7 |
+
# Load the YOLOv8 model
|
| 8 |
+
model = YOLO("yolov8n-pose.pt")
|
| 9 |
+
|
| 10 |
+
# Streamlit App
|
| 11 |
+
st.title("Workout Monitoring App")
|
| 12 |
+
st.write("Upload a video to monitor your ab workout.")
|
| 13 |
+
|
| 14 |
+
uploaded_file = st.file_uploader("Choose a video file", type=["mp4", "mov", "avi"])
|
| 15 |
+
|
| 16 |
+
if uploaded_file is not None:
|
| 17 |
+
# Save the uploaded video to a temporary file
|
| 18 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
| 19 |
+
tfile.write(uploaded_file.read())
|
| 20 |
+
tfile.close()
|
| 21 |
+
|
| 22 |
+
# Load the video with OpenCV
|
| 23 |
+
cap = cv2.VideoCapture(tfile.name)
|
| 24 |
+
assert cap.isOpened(), "Error reading video file"
|
| 25 |
+
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
| 26 |
+
|
| 27 |
+
# Initialize AIGym object
|
| 28 |
+
gym_object = solutions.AIGym(
|
| 29 |
+
line_thickness=2,
|
| 30 |
+
view_img=False, # Set to False since we are using Streamlit to display
|
| 31 |
+
pose_type="abworkout", # Use 'abworkout' as the pose type
|
| 32 |
+
kpts_to_check=[6, 8, 10],
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# List to store processed frames
|
| 36 |
+
processed_frames = []
|
| 37 |
+
|
| 38 |
+
# Process the video frame by frame
|
| 39 |
+
st.write("Analyzing video... Please wait.")
|
| 40 |
+
while cap.isOpened():
|
| 41 |
+
success, im0 = cap.read()
|
| 42 |
+
if not success:
|
| 43 |
+
break
|
| 44 |
+
|
| 45 |
+
results = model.track(im0, verbose=False) # Tracking recommended
|
| 46 |
+
im0 = gym_object.start_counting(im0, results)
|
| 47 |
+
|
| 48 |
+
# Append the processed frame to the list
|
| 49 |
+
processed_frames.append(im0)
|
| 50 |
+
|
| 51 |
+
cap.release()
|
| 52 |
+
cv2.destroyAllWindows()
|
| 53 |
+
|
| 54 |
+
# Create a temporary file to save the processed video
|
| 55 |
+
output_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.avi')
|
| 56 |
+
output_video_path = output_video_file.name
|
| 57 |
+
|
| 58 |
+
# Write the processed frames to a video file
|
| 59 |
+
video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
| 60 |
+
for frame in processed_frames:
|
| 61 |
+
video_writer.write(frame)
|
| 62 |
+
video_writer.release()
|
| 63 |
+
|
| 64 |
+
# Display the processed video in Streamlit
|
| 65 |
+
st.write("Analysis complete. Displaying processed video:")
|
| 66 |
+
st.video(output_video_path)
|
| 67 |
+
|
| 68 |
+
# Provide a download link for the processed video
|
| 69 |
+
st.write("Download the processed video:")
|
| 70 |
+
with open(output_video_path, "rb") as video_file:
|
| 71 |
+
st.download_button("Download", video_file, "workouts.avi")
|