Upload vae.py
Browse files- vae/vae.py +131 -0
vae/vae.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""The causal continuous video tokenizer with VAE or AE formulation for 3D data.."""
|
16 |
+
|
17 |
+
import logging
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
from enum import Enum
|
21 |
+
import math
|
22 |
+
|
23 |
+
from .cosmos_tokenizer.layers3d import (
|
24 |
+
EncoderFactorized,
|
25 |
+
DecoderFactorized,
|
26 |
+
CausalConv3d,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
class IdentityDistribution(torch.nn.Module):
|
31 |
+
def __init__(self):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
def forward(self, parameters):
|
35 |
+
return parameters, (torch.tensor([0.0]), torch.tensor([0.0]))
|
36 |
+
|
37 |
+
|
38 |
+
class GaussianDistribution(torch.nn.Module):
|
39 |
+
def __init__(self, min_logvar: float = -30.0, max_logvar: float = 20.0):
|
40 |
+
super().__init__()
|
41 |
+
self.min_logvar = min_logvar
|
42 |
+
self.max_logvar = max_logvar
|
43 |
+
|
44 |
+
def sample(self, mean, logvar):
|
45 |
+
std = torch.exp(0.5 * logvar)
|
46 |
+
return mean + std * torch.randn_like(mean)
|
47 |
+
|
48 |
+
def forward(self, parameters):
|
49 |
+
mean, logvar = torch.chunk(parameters, 2, dim=1)
|
50 |
+
logvar = torch.clamp(logvar, self.min_logvar, self.max_logvar)
|
51 |
+
return self.sample(mean, logvar), (mean, logvar)
|
52 |
+
|
53 |
+
|
54 |
+
class ContinuousFormulation(Enum):
|
55 |
+
VAE = GaussianDistribution
|
56 |
+
AE = IdentityDistribution
|
57 |
+
|
58 |
+
|
59 |
+
class CausalContinuousVideoTokenizer(nn.Module):
|
60 |
+
def __init__(
|
61 |
+
self, z_channels: int, z_factor: int, latent_channels: int, **kwargs
|
62 |
+
) -> None:
|
63 |
+
super().__init__()
|
64 |
+
self.name = kwargs.get("name", "CausalContinuousVideoTokenizer")
|
65 |
+
self.latent_channels = latent_channels
|
66 |
+
self.sigma_data = 0.5
|
67 |
+
|
68 |
+
# encoder_name = kwargs.get("encoder", Encoder3DType.BASE.name)
|
69 |
+
self.encoder = EncoderFactorized(
|
70 |
+
z_channels=z_factor * z_channels, **kwargs
|
71 |
+
)
|
72 |
+
if kwargs.get("temporal_compression", 4) == 4:
|
73 |
+
kwargs["channels_mult"] = [2, 4]
|
74 |
+
# decoder_name = kwargs.get("decoder", Decoder3DType.BASE.name)
|
75 |
+
self.decoder = DecoderFactorized(
|
76 |
+
z_channels=z_channels, **kwargs
|
77 |
+
)
|
78 |
+
|
79 |
+
self.quant_conv = CausalConv3d(
|
80 |
+
z_factor * z_channels,
|
81 |
+
z_factor * latent_channels,
|
82 |
+
kernel_size=1,
|
83 |
+
padding=0,
|
84 |
+
)
|
85 |
+
self.post_quant_conv = CausalConv3d(
|
86 |
+
latent_channels, z_channels, kernel_size=1, padding=0
|
87 |
+
)
|
88 |
+
|
89 |
+
# formulation_name = kwargs.get("formulation", ContinuousFormulation.AE.name)
|
90 |
+
self.distribution = IdentityDistribution() # ContinuousFormulation[formulation_name].value()
|
91 |
+
|
92 |
+
num_parameters = sum(param.numel() for param in self.parameters())
|
93 |
+
logging.debug(f"model={self.name}, num_parameters={num_parameters:,}")
|
94 |
+
logging.debug(
|
95 |
+
f"z_channels={z_channels}, latent_channels={self.latent_channels}."
|
96 |
+
)
|
97 |
+
|
98 |
+
latent_temporal_chunk = 16
|
99 |
+
self.latent_mean = nn.Parameter(torch.zeros([self.latent_channels * latent_temporal_chunk], dtype=torch.float32))
|
100 |
+
self.latent_std = nn.Parameter(torch.ones([self.latent_channels * latent_temporal_chunk], dtype=torch.float32))
|
101 |
+
|
102 |
+
|
103 |
+
def encode(self, x):
|
104 |
+
h = self.encoder(x)
|
105 |
+
moments = self.quant_conv(h)
|
106 |
+
z, posteriors = self.distribution(moments)
|
107 |
+
latent_ch = z.shape[1]
|
108 |
+
latent_t = z.shape[2]
|
109 |
+
in_dtype = z.dtype
|
110 |
+
mean = self.latent_mean.view(latent_ch, -1)
|
111 |
+
std = self.latent_std.view(latent_ch, -1)
|
112 |
+
|
113 |
+
mean = mean.repeat(1, math.ceil(latent_t / mean.shape[-1]))[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device)
|
114 |
+
std = std.repeat(1, math.ceil(latent_t / std.shape[-1]))[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device)
|
115 |
+
return ((z - mean) / std) * self.sigma_data
|
116 |
+
|
117 |
+
def decode(self, z):
|
118 |
+
in_dtype = z.dtype
|
119 |
+
latent_ch = z.shape[1]
|
120 |
+
latent_t = z.shape[2]
|
121 |
+
mean = self.latent_mean.view(latent_ch, -1)
|
122 |
+
std = self.latent_std.view(latent_ch, -1)
|
123 |
+
|
124 |
+
mean = mean.repeat(1, math.ceil(latent_t / mean.shape[-1]))[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device)
|
125 |
+
std = std.repeat(1, math.ceil(latent_t / std.shape[-1]))[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device)
|
126 |
+
|
127 |
+
z = z / self.sigma_data
|
128 |
+
z = z * std + mean
|
129 |
+
z = self.post_quant_conv(z)
|
130 |
+
return self.decoder(z)
|
131 |
+
|