|
from __future__ import annotations |
|
from typing import TYPE_CHECKING, Callable |
|
import enum |
|
import math |
|
import torch |
|
import numpy as np |
|
import itertools |
|
import logging |
|
|
|
if TYPE_CHECKING: |
|
from comfy.model_patcher import ModelPatcher, PatcherInjection |
|
from comfy.model_base import BaseModel |
|
from comfy.sd import CLIP |
|
import comfy.lora |
|
import comfy.model_management |
|
import comfy.patcher_extension |
|
from node_helpers import conditioning_set_values |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class EnumHookMode(enum.Enum): |
|
''' |
|
Priority of hook memory optimization vs. speed, mostly related to WeightHooks. |
|
|
|
MinVram: No caching will occur for any operations related to hooks. |
|
MaxSpeed: Excess VRAM (and RAM, once VRAM is sufficiently depleted) will be used to cache hook weights when switching hook groups. |
|
''' |
|
MinVram = "minvram" |
|
MaxSpeed = "maxspeed" |
|
|
|
class EnumHookType(enum.Enum): |
|
''' |
|
Hook types, each of which has different expected behavior. |
|
''' |
|
Weight = "weight" |
|
ObjectPatch = "object_patch" |
|
AdditionalModels = "add_models" |
|
TransformerOptions = "transformer_options" |
|
Injections = "add_injections" |
|
|
|
class EnumWeightTarget(enum.Enum): |
|
Model = "model" |
|
Clip = "clip" |
|
|
|
class EnumHookScope(enum.Enum): |
|
''' |
|
Determines if hook should be limited in its influence over sampling. |
|
|
|
AllConditioning: hook will affect all conds used in sampling. |
|
HookedOnly: hook will only affect the conds it was attached to. |
|
''' |
|
AllConditioning = "all_conditioning" |
|
HookedOnly = "hooked_only" |
|
|
|
|
|
class _HookRef: |
|
pass |
|
|
|
|
|
def default_should_register(hook: Hook, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): |
|
'''Example for how custom_should_register function can look like.''' |
|
return True |
|
|
|
|
|
def create_target_dict(target: EnumWeightTarget=None, **kwargs) -> dict[str]: |
|
'''Creates base dictionary for use with Hooks' target param.''' |
|
d = {} |
|
if target is not None: |
|
d['target'] = target |
|
d.update(kwargs) |
|
return d |
|
|
|
|
|
class Hook: |
|
def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None, hook_id: str=None, |
|
hook_keyframe: HookKeyframeGroup=None, hook_scope=EnumHookScope.AllConditioning): |
|
self.hook_type = hook_type |
|
'''Enum identifying the general class of this hook.''' |
|
self.hook_ref = hook_ref if hook_ref else _HookRef() |
|
'''Reference shared between hook clones that have the same value. Should NOT be modified.''' |
|
self.hook_id = hook_id |
|
'''Optional string ID to identify hook; useful if need to consolidate duplicates at registration time.''' |
|
self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup() |
|
'''Keyframe storage that can be referenced to get strength for current sampling step.''' |
|
self.hook_scope = hook_scope |
|
'''Scope of where this hook should apply in terms of the conds used in sampling run.''' |
|
self.custom_should_register = default_should_register |
|
'''Can be overriden with a compatible function to decide if this hook should be registered without the need to override .should_register''' |
|
|
|
@property |
|
def strength(self): |
|
return self.hook_keyframe.strength |
|
|
|
def initialize_timesteps(self, model: BaseModel): |
|
self.reset() |
|
self.hook_keyframe.initialize_timesteps(model) |
|
|
|
def reset(self): |
|
self.hook_keyframe.reset() |
|
|
|
def clone(self): |
|
c: Hook = self.__class__() |
|
c.hook_type = self.hook_type |
|
c.hook_ref = self.hook_ref |
|
c.hook_id = self.hook_id |
|
c.hook_keyframe = self.hook_keyframe |
|
c.hook_scope = self.hook_scope |
|
c.custom_should_register = self.custom_should_register |
|
return c |
|
|
|
def should_register(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): |
|
return self.custom_should_register(self, model, model_options, target_dict, registered) |
|
|
|
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): |
|
raise NotImplementedError("add_hook_patches should be defined for Hook subclasses") |
|
|
|
def __eq__(self, other: Hook): |
|
return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref |
|
|
|
def __hash__(self): |
|
return hash(self.hook_ref) |
|
|
|
class WeightHook(Hook): |
|
''' |
|
Hook responsible for tracking weights to be applied to some model/clip. |
|
|
|
Note, value of hook_scope is ignored and is treated as HookedOnly. |
|
''' |
|
def __init__(self, strength_model=1.0, strength_clip=1.0): |
|
super().__init__(hook_type=EnumHookType.Weight, hook_scope=EnumHookScope.HookedOnly) |
|
self.weights: dict = None |
|
self.weights_clip: dict = None |
|
self.need_weight_init = True |
|
self._strength_model = strength_model |
|
self._strength_clip = strength_clip |
|
self.hook_scope = EnumHookScope.HookedOnly |
|
|
|
@property |
|
def strength_model(self): |
|
return self._strength_model * self.strength |
|
|
|
@property |
|
def strength_clip(self): |
|
return self._strength_clip * self.strength |
|
|
|
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): |
|
if not self.should_register(model, model_options, target_dict, registered): |
|
return False |
|
weights = None |
|
|
|
target = target_dict.get('target', None) |
|
if target == EnumWeightTarget.Clip: |
|
strength = self._strength_clip |
|
else: |
|
strength = self._strength_model |
|
|
|
if self.need_weight_init: |
|
key_map = {} |
|
if target == EnumWeightTarget.Clip: |
|
key_map = comfy.lora.model_lora_keys_clip(model.model, key_map) |
|
else: |
|
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map) |
|
weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False) |
|
else: |
|
if target == EnumWeightTarget.Clip: |
|
weights = self.weights_clip |
|
else: |
|
weights = self.weights |
|
model.add_hook_patches(hook=self, patches=weights, strength_patch=strength) |
|
registered.add(self) |
|
return True |
|
|
|
|
|
def clone(self): |
|
c: WeightHook = super().clone() |
|
c.weights = self.weights |
|
c.weights_clip = self.weights_clip |
|
c.need_weight_init = self.need_weight_init |
|
c._strength_model = self._strength_model |
|
c._strength_clip = self._strength_clip |
|
return c |
|
|
|
class ObjectPatchHook(Hook): |
|
def __init__(self, object_patches: dict[str]=None, |
|
hook_scope=EnumHookScope.AllConditioning): |
|
super().__init__(hook_type=EnumHookType.ObjectPatch) |
|
self.object_patches = object_patches |
|
self.hook_scope = hook_scope |
|
|
|
def clone(self): |
|
c: ObjectPatchHook = super().clone() |
|
c.object_patches = self.object_patches |
|
return c |
|
|
|
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): |
|
raise NotImplementedError("ObjectPatchHook is not supported yet in ComfyUI.") |
|
|
|
class AdditionalModelsHook(Hook): |
|
''' |
|
Hook responsible for telling model management any additional models that should be loaded. |
|
|
|
Note, value of hook_scope is ignored and is treated as AllConditioning. |
|
''' |
|
def __init__(self, models: list[ModelPatcher]=None, key: str=None): |
|
super().__init__(hook_type=EnumHookType.AdditionalModels) |
|
self.models = models |
|
self.key = key |
|
|
|
def clone(self): |
|
c: AdditionalModelsHook = super().clone() |
|
c.models = self.models.copy() if self.models else self.models |
|
c.key = self.key |
|
return c |
|
|
|
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): |
|
if not self.should_register(model, model_options, target_dict, registered): |
|
return False |
|
registered.add(self) |
|
return True |
|
|
|
class TransformerOptionsHook(Hook): |
|
''' |
|
Hook responsible for adding wrappers, callbacks, patches, or anything else related to transformer_options. |
|
''' |
|
def __init__(self, transformers_dict: dict[str, dict[str, dict[str, list[Callable]]]]=None, |
|
hook_scope=EnumHookScope.AllConditioning): |
|
super().__init__(hook_type=EnumHookType.TransformerOptions) |
|
self.transformers_dict = transformers_dict |
|
self.hook_scope = hook_scope |
|
self._skip_adding = False |
|
'''Internal value used to avoid double load of transformer_options when hook_scope is AllConditioning.''' |
|
|
|
def clone(self): |
|
c: TransformerOptionsHook = super().clone() |
|
c.transformers_dict = self.transformers_dict |
|
c._skip_adding = self._skip_adding |
|
return c |
|
|
|
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): |
|
if not self.should_register(model, model_options, target_dict, registered): |
|
return False |
|
|
|
self._skip_adding = False |
|
if self.hook_scope == EnumHookScope.AllConditioning: |
|
add_model_options = {"transformer_options": self.transformers_dict, |
|
"to_load_options": self.transformers_dict} |
|
|
|
self._skip_adding = True |
|
else: |
|
add_model_options = {"to_load_options": self.transformers_dict} |
|
registered.add(self) |
|
comfy.patcher_extension.merge_nested_dicts(model_options, add_model_options, copy_dict1=False) |
|
return True |
|
|
|
def on_apply_hooks(self, model: ModelPatcher, transformer_options: dict[str]): |
|
if not self._skip_adding: |
|
comfy.patcher_extension.merge_nested_dicts(transformer_options, self.transformers_dict, copy_dict1=False) |
|
|
|
WrapperHook = TransformerOptionsHook |
|
'''Only here for backwards compatibility, WrapperHook is identical to TransformerOptionsHook.''' |
|
|
|
class InjectionsHook(Hook): |
|
def __init__(self, key: str=None, injections: list[PatcherInjection]=None, |
|
hook_scope=EnumHookScope.AllConditioning): |
|
super().__init__(hook_type=EnumHookType.Injections) |
|
self.key = key |
|
self.injections = injections |
|
self.hook_scope = hook_scope |
|
|
|
def clone(self): |
|
c: InjectionsHook = super().clone() |
|
c.key = self.key |
|
c.injections = self.injections.copy() if self.injections else self.injections |
|
return c |
|
|
|
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): |
|
raise NotImplementedError("InjectionsHook is not supported yet in ComfyUI.") |
|
|
|
class HookGroup: |
|
''' |
|
Stores groups of hooks, and allows them to be queried by type. |
|
|
|
To prevent breaking their functionality, never modify the underlying self.hooks or self._hook_dict vars directly; |
|
always use the provided functions on HookGroup. |
|
''' |
|
def __init__(self): |
|
self.hooks: list[Hook] = [] |
|
self._hook_dict: dict[EnumHookType, list[Hook]] = {} |
|
|
|
def __len__(self): |
|
return len(self.hooks) |
|
|
|
def add(self, hook: Hook): |
|
if hook not in self.hooks: |
|
self.hooks.append(hook) |
|
self._hook_dict.setdefault(hook.hook_type, []).append(hook) |
|
|
|
def remove(self, hook: Hook): |
|
if hook in self.hooks: |
|
self.hooks.remove(hook) |
|
self._hook_dict[hook.hook_type].remove(hook) |
|
|
|
def get_type(self, hook_type: EnumHookType): |
|
return self._hook_dict.get(hook_type, []) |
|
|
|
def contains(self, hook: Hook): |
|
return hook in self.hooks |
|
|
|
def is_subset_of(self, other: HookGroup): |
|
self_hooks = set(self.hooks) |
|
other_hooks = set(other.hooks) |
|
return self_hooks.issubset(other_hooks) |
|
|
|
def new_with_common_hooks(self, other: HookGroup): |
|
c = HookGroup() |
|
for hook in self.hooks: |
|
if other.contains(hook): |
|
c.add(hook.clone()) |
|
return c |
|
|
|
def clone(self): |
|
c = HookGroup() |
|
for hook in self.hooks: |
|
c.add(hook.clone()) |
|
return c |
|
|
|
def clone_and_combine(self, other: HookGroup): |
|
c = self.clone() |
|
if other is not None: |
|
for hook in other.hooks: |
|
c.add(hook.clone()) |
|
return c |
|
|
|
def set_keyframes_on_hooks(self, hook_kf: HookKeyframeGroup): |
|
if hook_kf is None: |
|
hook_kf = HookKeyframeGroup() |
|
else: |
|
hook_kf = hook_kf.clone() |
|
for hook in self.hooks: |
|
hook.hook_keyframe = hook_kf |
|
|
|
def get_hooks_for_clip_schedule(self): |
|
scheduled_hooks: dict[WeightHook, list[tuple[tuple[float,float], HookKeyframe]]] = {} |
|
|
|
for hook in self.get_type(EnumHookType.Weight): |
|
hook: WeightHook |
|
hook_schedule = [] |
|
|
|
if len(hook.hook_keyframe.keyframes) == 0: |
|
hook_schedule.append(((0.0, 1.0), None)) |
|
scheduled_hooks[hook] = hook_schedule |
|
continue |
|
|
|
prev_keyframe = hook.hook_keyframe.keyframes[0] |
|
for keyframe in hook.hook_keyframe.keyframes: |
|
if keyframe.start_percent > prev_keyframe.start_percent and not math.isclose(keyframe.strength, prev_keyframe.strength): |
|
hook_schedule.append(((prev_keyframe.start_percent, keyframe.start_percent), prev_keyframe)) |
|
prev_keyframe = keyframe |
|
elif keyframe.start_percent == prev_keyframe.start_percent: |
|
prev_keyframe = keyframe |
|
|
|
if not math.isclose(prev_keyframe.start_percent, 1.0): |
|
hook_schedule.append(((prev_keyframe.start_percent, 1.0), prev_keyframe)) |
|
scheduled_hooks[hook] = hook_schedule |
|
|
|
all_ranges: list[tuple[float, float]] = [] |
|
for range_kfs in scheduled_hooks.values(): |
|
for t_range, keyframe in range_kfs: |
|
all_ranges.append(t_range) |
|
|
|
boundaries_set = set(itertools.chain.from_iterable(all_ranges)) |
|
boundaries_set.add(0.0) |
|
boundaries = sorted(boundaries_set) |
|
real_ranges = [(boundaries[i], boundaries[i + 1]) for i in range(len(boundaries) - 1)] |
|
|
|
scheduled_keyframes: list[tuple[tuple[float,float], list[tuple[WeightHook, HookKeyframe]]]] = [] |
|
for t_range in real_ranges: |
|
hooks_schedule = [] |
|
for hook, val in scheduled_hooks.items(): |
|
keyframe = None |
|
|
|
for stored_range, stored_kf in val: |
|
|
|
if stored_range[0] < t_range[1] and stored_range[1] > t_range[0]: |
|
keyframe = stored_kf |
|
break |
|
hooks_schedule.append((hook, keyframe)) |
|
scheduled_keyframes.append((t_range, hooks_schedule)) |
|
return scheduled_keyframes |
|
|
|
def reset(self): |
|
for hook in self.hooks: |
|
hook.reset() |
|
|
|
@staticmethod |
|
def combine_all_hooks(hooks_list: list[HookGroup], require_count=0) -> HookGroup: |
|
actual: list[HookGroup] = [] |
|
for group in hooks_list: |
|
if group is not None: |
|
actual.append(group) |
|
if len(actual) < require_count: |
|
raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.") |
|
|
|
if len(actual) == 0: |
|
return None |
|
|
|
elif len(actual) == 1: |
|
return actual[0] |
|
final_hook: HookGroup = None |
|
for hook in actual: |
|
if final_hook is None: |
|
final_hook = hook.clone() |
|
else: |
|
final_hook = final_hook.clone_and_combine(hook) |
|
return final_hook |
|
|
|
|
|
class HookKeyframe: |
|
def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1): |
|
self.strength = strength |
|
|
|
self.start_percent = float(start_percent) |
|
self.start_t = 999999999.9 |
|
self.guarantee_steps = guarantee_steps |
|
|
|
def get_effective_guarantee_steps(self, max_sigma: torch.Tensor): |
|
'''If keyframe starts before current sampling range (max_sigma), treat as 0.''' |
|
if self.start_t > max_sigma: |
|
return 0 |
|
return self.guarantee_steps |
|
|
|
def clone(self): |
|
c = HookKeyframe(strength=self.strength, |
|
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps) |
|
c.start_t = self.start_t |
|
return c |
|
|
|
class HookKeyframeGroup: |
|
def __init__(self): |
|
self.keyframes: list[HookKeyframe] = [] |
|
self._current_keyframe: HookKeyframe = None |
|
self._current_used_steps = 0 |
|
self._current_index = 0 |
|
self._current_strength = None |
|
self._curr_t = -1. |
|
|
|
|
|
@property |
|
def strength(self): |
|
if self._current_keyframe is not None: |
|
return self._current_keyframe.strength |
|
return 1.0 |
|
|
|
def reset(self): |
|
self._current_keyframe = None |
|
self._current_used_steps = 0 |
|
self._current_index = 0 |
|
self._current_strength = None |
|
self.curr_t = -1. |
|
self._set_first_as_current() |
|
|
|
def add(self, keyframe: HookKeyframe): |
|
|
|
self.keyframes.append(keyframe) |
|
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent") |
|
self._set_first_as_current() |
|
|
|
def _set_first_as_current(self): |
|
if len(self.keyframes) > 0: |
|
self._current_keyframe = self.keyframes[0] |
|
else: |
|
self._current_keyframe = None |
|
|
|
def has_guarantee_steps(self): |
|
for kf in self.keyframes: |
|
if kf.guarantee_steps > 0: |
|
return True |
|
return False |
|
|
|
def has_index(self, index: int): |
|
return index >= 0 and index < len(self.keyframes) |
|
|
|
def is_empty(self): |
|
return len(self.keyframes) == 0 |
|
|
|
def clone(self): |
|
c = HookKeyframeGroup() |
|
for keyframe in self.keyframes: |
|
c.keyframes.append(keyframe.clone()) |
|
c._set_first_as_current() |
|
return c |
|
|
|
def initialize_timesteps(self, model: BaseModel): |
|
for keyframe in self.keyframes: |
|
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent) |
|
|
|
def prepare_current_keyframe(self, curr_t: float, transformer_options: dict[str, torch.Tensor]) -> bool: |
|
if self.is_empty(): |
|
return False |
|
if curr_t == self._curr_t: |
|
return False |
|
max_sigma = torch.max(transformer_options["sample_sigmas"]) |
|
prev_index = self._current_index |
|
prev_strength = self._current_strength |
|
|
|
if self._current_used_steps >= self._current_keyframe.get_effective_guarantee_steps(max_sigma): |
|
|
|
if self.has_index(self._current_index+1): |
|
for i in range(self._current_index+1, len(self.keyframes)): |
|
eval_c = self.keyframes[i] |
|
|
|
|
|
if eval_c.start_t >= curr_t: |
|
self._current_index = i |
|
self._current_strength = eval_c.strength |
|
self._current_keyframe = eval_c |
|
self._current_used_steps = 0 |
|
|
|
if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0: |
|
break |
|
|
|
else: break |
|
|
|
self._current_used_steps += 1 |
|
|
|
self._curr_t = curr_t |
|
|
|
return prev_index != self._current_index and prev_strength != self._current_strength |
|
|
|
|
|
class InterpolationMethod: |
|
LINEAR = "linear" |
|
EASE_IN = "ease_in" |
|
EASE_OUT = "ease_out" |
|
EASE_IN_OUT = "ease_in_out" |
|
|
|
_LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT] |
|
|
|
@classmethod |
|
def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False): |
|
diff = num_to - num_from |
|
if method == cls.LINEAR: |
|
weights = torch.linspace(num_from, num_to, length) |
|
elif method == cls.EASE_IN: |
|
index = torch.linspace(0, 1, length) |
|
weights = diff * np.power(index, 2) + num_from |
|
elif method == cls.EASE_OUT: |
|
index = torch.linspace(0, 1, length) |
|
weights = diff * (1 - np.power(1 - index, 2)) + num_from |
|
elif method == cls.EASE_IN_OUT: |
|
index = torch.linspace(0, 1, length) |
|
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from |
|
else: |
|
raise ValueError(f"Unrecognized interpolation method '{method}'.") |
|
if reverse: |
|
weights = weights.flip(dims=(0,)) |
|
return weights |
|
|
|
def get_sorted_list_via_attr(objects: list, attr: str) -> list: |
|
if not objects: |
|
return objects |
|
elif len(objects) <= 1: |
|
return [x for x in objects] |
|
|
|
|
|
|
|
unique_attrs = {} |
|
for o in objects: |
|
val_attr = getattr(o, attr) |
|
attr_list: list = unique_attrs.get(val_attr, list()) |
|
attr_list.append(o) |
|
if val_attr not in unique_attrs: |
|
unique_attrs[val_attr] = attr_list |
|
|
|
sorted_attrs = dict(sorted(unique_attrs.items())) |
|
|
|
sorted_list = [] |
|
for object_list in sorted_attrs.values(): |
|
sorted_list.extend(object_list) |
|
return sorted_list |
|
|
|
def create_transformer_options_from_hooks(model: ModelPatcher, hooks: HookGroup, transformer_options: dict[str]=None): |
|
|
|
if hooks is None or model.is_clip: |
|
return {} |
|
if transformer_options is None: |
|
transformer_options = {} |
|
for hook in hooks.get_type(EnumHookType.TransformerOptions): |
|
hook: TransformerOptionsHook |
|
hook.on_apply_hooks(model, transformer_options) |
|
return transformer_options |
|
|
|
def create_hook_lora(lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float): |
|
hook_group = HookGroup() |
|
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip) |
|
hook_group.add(hook) |
|
hook.weights = lora |
|
return hook_group |
|
|
|
def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float): |
|
hook_group = HookGroup() |
|
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip) |
|
hook_group.add(hook) |
|
patches_model = None |
|
patches_clip = None |
|
if weights_model is not None: |
|
patches_model = {} |
|
for key in weights_model: |
|
patches_model[key] = ("model_as_lora", (weights_model[key],)) |
|
if weights_clip is not None: |
|
patches_clip = {} |
|
for key in weights_clip: |
|
patches_clip[key] = ("model_as_lora", (weights_clip[key],)) |
|
hook.weights = patches_model |
|
hook.weights_clip = patches_clip |
|
hook.need_weight_init = False |
|
return hook_group |
|
|
|
def get_patch_weights_from_model(model: ModelPatcher, discard_model_sampling=True): |
|
if model is None: |
|
return None |
|
patches_model: dict[str, torch.Tensor] = model.model.state_dict() |
|
if discard_model_sampling: |
|
|
|
for key in list(patches_model.keys()): |
|
if key.startswith("model_sampling"): |
|
patches_model.pop(key, None) |
|
return patches_model |
|
|
|
|
|
def load_hook_lora_for_models(model: ModelPatcher, clip: CLIP, lora: dict[str, torch.Tensor], |
|
strength_model: float, strength_clip: float): |
|
key_map = {} |
|
if model is not None: |
|
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map) |
|
if clip is not None: |
|
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map) |
|
|
|
hook_group = HookGroup() |
|
hook = WeightHook() |
|
hook_group.add(hook) |
|
loaded: dict[str] = comfy.lora.load_lora(lora, key_map) |
|
if model is not None: |
|
new_modelpatcher = model.clone() |
|
k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model) |
|
else: |
|
k = () |
|
new_modelpatcher = None |
|
|
|
if clip is not None: |
|
new_clip = clip.clone() |
|
k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip) |
|
else: |
|
k1 = () |
|
new_clip = None |
|
k = set(k) |
|
k1 = set(k1) |
|
for x in loaded: |
|
if (x not in k) and (x not in k1): |
|
logging.warning(f"NOT LOADED {x}") |
|
return (new_modelpatcher, new_clip, hook_group) |
|
|
|
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]): |
|
hooks_key = 'hooks' |
|
|
|
if hooks_key not in values: |
|
return |
|
if hooks_key not in c_dict: |
|
hooks_value = values.get(hooks_key, None) |
|
if hooks_value is not None: |
|
c_dict[hooks_key] = hooks_value |
|
return |
|
|
|
hooks_tuple = (c_dict[hooks_key], values[hooks_key]) |
|
cached_hooks = cache.get(hooks_tuple, None) |
|
if cached_hooks is None: |
|
new_hooks = hooks_tuple[0].clone_and_combine(hooks_tuple[1]) |
|
cache[hooks_tuple] = new_hooks |
|
c_dict[hooks_key] = new_hooks |
|
else: |
|
c_dict[hooks_key] = cache[hooks_tuple] |
|
|
|
def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True, |
|
cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None): |
|
c = [] |
|
if cache is None: |
|
cache = {} |
|
for t in conditioning: |
|
n = [t[0], t[1].copy()] |
|
for k in values: |
|
if append_hooks and k == 'hooks': |
|
_combine_hooks_from_values(n[1], values, cache) |
|
else: |
|
n[1][k] = values[k] |
|
c.append(n) |
|
|
|
return c |
|
|
|
def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True, cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None): |
|
if hooks is None: |
|
return cond |
|
return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks, cache=cache) |
|
|
|
def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]): |
|
if timestep_range is None: |
|
return cond |
|
return conditioning_set_values(cond, {"start_percent": timestep_range[0], |
|
"end_percent": timestep_range[1]}) |
|
|
|
def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float): |
|
if mask is None: |
|
return cond |
|
set_area_to_bounds = False |
|
if set_cond_area != 'default': |
|
set_area_to_bounds = True |
|
if len(mask.shape) < 3: |
|
mask = mask.unsqueeze(0) |
|
return conditioning_set_values(cond, {'mask': mask, |
|
'set_area_to_bounds': set_area_to_bounds, |
|
'mask_strength': strength}) |
|
|
|
def combine_conditioning(conds: list): |
|
combined_conds = [] |
|
for cond in conds: |
|
combined_conds.extend(cond) |
|
return combined_conds |
|
|
|
def combine_with_new_conds(conds: list, new_conds: list): |
|
combined_conds = [] |
|
for c, new_c in zip(conds, new_conds): |
|
combined_conds.append(combine_conditioning([c, new_c])) |
|
return combined_conds |
|
|
|
def set_conds_props(conds: list, strength: float, set_cond_area: str, |
|
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True): |
|
final_conds = [] |
|
cache = {} |
|
for c in conds: |
|
|
|
c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks, cache=cache) |
|
|
|
c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area) |
|
|
|
c = set_timesteps_for_conditioning(cond=c, timestep_range=timesteps_range) |
|
|
|
final_conds.append(c) |
|
return final_conds |
|
|
|
def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default", |
|
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True): |
|
combined_conds = [] |
|
cache = {} |
|
for c, masked_c in zip(conds, new_conds): |
|
|
|
masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks, cache=cache) |
|
|
|
masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength) |
|
|
|
masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=timesteps_range) |
|
|
|
combined_conds.append(combine_conditioning([c, masked_c])) |
|
return combined_conds |
|
|
|
def set_default_conds_and_combine(conds: list, new_conds: list, |
|
hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True): |
|
combined_conds = [] |
|
cache = {} |
|
for c, new_c in zip(conds, new_conds): |
|
|
|
new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks, cache=cache) |
|
|
|
new_c = conditioning_set_values(new_c, {'default': True}) |
|
|
|
new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=timesteps_range) |
|
|
|
combined_conds.append(combine_conditioning([c, new_c])) |
|
return combined_conds |
|
|