|
from comfy import sd1_clip |
|
import comfy.text_encoders.t5 |
|
import os |
|
from transformers import T5TokenizerFast |
|
|
|
|
|
class T5XXLModel(sd1_clip.SDClipModel): |
|
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}): |
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_old_config_xxl.json") |
|
t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None) |
|
if t5xxl_scaled_fp8 is not None: |
|
model_options = model_options.copy() |
|
model_options["scaled_fp8"] = t5xxl_scaled_fp8 |
|
|
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, zero_out_masked=attention_mask, model_options=model_options) |
|
|
|
class CosmosT5XXL(sd1_clip.SD1ClipModel): |
|
def __init__(self, device="cpu", dtype=None, model_options={}): |
|
super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options) |
|
|
|
|
|
class T5XXLTokenizer(sd1_clip.SDTokenizer): |
|
def __init__(self, embedding_directory=None, tokenizer_data={}): |
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") |
|
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512) |
|
|
|
|
|
class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer): |
|
def __init__(self, embedding_directory=None, tokenizer_data={}): |
|
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer) |
|
|
|
|
|
def te(dtype_t5=None, t5xxl_scaled_fp8=None): |
|
class CosmosTEModel_(CosmosT5XXL): |
|
def __init__(self, device="cpu", dtype=None, model_options={}): |
|
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: |
|
model_options = model_options.copy() |
|
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 |
|
if dtype is None: |
|
dtype = dtype_t5 |
|
super().__init__(device=device, dtype=dtype, model_options=model_options) |
|
return CosmosTEModel_ |
|
|