|
import os |
|
import random |
|
import sys |
|
from typing import Sequence, Mapping, Any, Union |
|
import torch |
|
|
|
torch.device('cpu') |
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' |
|
|
|
|
|
|
|
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: |
|
"""Returns the value at the given index of a sequence or mapping. |
|
|
|
If the object is a sequence (like list or string), returns the value at the given index. |
|
If the object is a mapping (like a dictionary), returns the value at the index-th key. |
|
|
|
Some return a dictionary, in these cases, we look for the "results" key |
|
|
|
Args: |
|
obj (Union[Sequence, Mapping]): The object to retrieve the value from. |
|
index (int): The index of the value to retrieve. |
|
|
|
Returns: |
|
Any: The value at the given index. |
|
|
|
Raises: |
|
IndexError: If the index is out of bounds for the object and the object is not a mapping. |
|
""" |
|
try: |
|
return obj[index] |
|
except KeyError: |
|
return obj["result"][index] |
|
|
|
|
|
def find_path(name: str, path: str = None) -> str: |
|
""" |
|
Recursively looks at parent folders starting from the given path until it finds the given name. |
|
Returns the path as a Path object if found, or None otherwise. |
|
""" |
|
|
|
if path is None: |
|
path = os.getcwd() |
|
|
|
|
|
if name in os.listdir(path): |
|
path_name = os.path.join(path, name) |
|
print(f"{name} found: {path_name}") |
|
return path_name |
|
|
|
|
|
parent_directory = os.path.dirname(path) |
|
|
|
|
|
if parent_directory == path: |
|
return None |
|
|
|
|
|
return find_path(name, parent_directory) |
|
|
|
|
|
def add_comfyui_directory_to_sys_path() -> None: |
|
""" |
|
Add 'ComfyUI' to the sys.path |
|
""" |
|
comfyui_path = find_path("ComfyUI") |
|
if comfyui_path is not None and os.path.isdir(comfyui_path): |
|
sys.path.append(comfyui_path) |
|
print(f"'{comfyui_path}' added to sys.path") |
|
|
|
|
|
def add_extra_model_paths() -> None: |
|
""" |
|
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. |
|
""" |
|
try: |
|
from main import load_extra_path_config |
|
except ImportError: |
|
print( |
|
"Could not import load_extra_path_config from main.py. Looking in extra_config instead." |
|
) |
|
from extra_config import load_extra_path_config |
|
|
|
extra_model_paths = find_path("extra_model_paths.yaml") |
|
|
|
if extra_model_paths is not None: |
|
load_extra_path_config(extra_model_paths) |
|
else: |
|
print("Could not find the extra_model_paths config file.") |
|
|
|
|
|
add_comfyui_directory_to_sys_path() |
|
add_extra_model_paths() |
|
|
|
|
|
def import_custom_nodes() -> None: |
|
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS |
|
|
|
This function sets up a new asyncio event loop, initializes the PromptServer, |
|
creates a PromptQueue, and initializes the custom nodes. |
|
""" |
|
import asyncio |
|
import execution |
|
from nodes import init_extra_nodes |
|
import server |
|
|
|
|
|
loop = asyncio.new_event_loop() |
|
asyncio.set_event_loop(loop) |
|
|
|
|
|
server_instance = server.PromptServer(loop) |
|
execution.PromptQueue(server_instance) |
|
|
|
|
|
init_extra_nodes() |
|
|
|
|
|
from nodes import NODE_CLASS_MAPPINGS |
|
|
|
|
|
def generate_image(prompt, structure_image, style_image, depth_strength, style_strength): |
|
import_custom_nodes() |
|
with torch.inference_mode(): |
|
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() |
|
vaeloader_10 = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors") |
|
|
|
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() |
|
dualcliploader_11 = dualcliploader.load_clip( |
|
clip_name1="clip_l.safetensors", |
|
clip_name2="t5xxl_fp8_e4m3fn.safetensors", |
|
type="flux", |
|
) |
|
|
|
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() |
|
loadimage_97 = loadimage.load_image(image=structure_image) |
|
|
|
pulidfluxinsightfaceloader = NODE_CLASS_MAPPINGS["PulidFluxInsightFaceLoader"]() |
|
pulidfluxinsightfaceloader_98 = pulidfluxinsightfaceloader.load_insightface( |
|
provider="CPU" |
|
) |
|
|
|
pulidfluxmodelloader = NODE_CLASS_MAPPINGS["PulidFluxModelLoader"]() |
|
pulidfluxmodelloader_99 = pulidfluxmodelloader.load_model( |
|
pulid_file="pulid_flux_v0.9.1.safetensors" |
|
) |
|
|
|
pulidfluxevacliploader = NODE_CLASS_MAPPINGS["PulidFluxEvaClipLoader"]() |
|
pulidfluxevacliploader_100 = pulidfluxevacliploader.load_eva_clip() |
|
|
|
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() |
|
cliptextencode_121 = cliptextencode.encode( |
|
text=prompt, clip=get_value_at_index(dualcliploader_11, 0) |
|
) |
|
|
|
conditioningzeroout = NODE_CLASS_MAPPINGS["ConditioningZeroOut"]() |
|
conditioningzeroout_116 = conditioningzeroout.zero_out( |
|
conditioning=get_value_at_index(cliptextencode_121, 0) |
|
) |
|
|
|
loadimage_129 = loadimage.load_image( |
|
image=style_image |
|
) |
|
|
|
getimagesize = NODE_CLASS_MAPPINGS["GetImageSize+"]() |
|
getimagesize_113 = getimagesize.execute( |
|
image=get_value_at_index(loadimage_129, 0) |
|
) |
|
|
|
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]() |
|
imageresize_112 = imageresize.execute( |
|
width=get_value_at_index(getimagesize_113, 0), |
|
height=get_value_at_index(getimagesize_113, 1), |
|
interpolation="nearest", |
|
method="keep proportion", |
|
condition="always", |
|
multiple_of=0, |
|
image=get_value_at_index(loadimage_129, 0), |
|
) |
|
|
|
layermask_personmaskultra = NODE_CLASS_MAPPINGS["LayerMask: PersonMaskUltra"]() |
|
layermask_personmaskultra_120 = layermask_personmaskultra.person_mask_ultra( |
|
face=True, |
|
hair=False, |
|
body=False, |
|
clothes=False, |
|
accessories=False, |
|
background=False, |
|
confidence=0.4, |
|
detail_range=16, |
|
black_point=0.01, |
|
white_point=0.99, |
|
process_detail=True, |
|
images=get_value_at_index(imageresize_112, 0), |
|
) |
|
|
|
growmask = NODE_CLASS_MAPPINGS["GrowMask"]() |
|
growmask_118 = growmask.expand_mask( |
|
expand=43, |
|
tapered_corners=True, |
|
mask=get_value_at_index(layermask_personmaskultra_120, 1), |
|
) |
|
|
|
maskblur = NODE_CLASS_MAPPINGS["MaskBlur+"]() |
|
maskblur_119 = maskblur.execute( |
|
amount=60, device="auto", mask=get_value_at_index(growmask_118, 0) |
|
) |
|
|
|
inpaintmodelconditioning = NODE_CLASS_MAPPINGS["InpaintModelConditioning"]() |
|
inpaintmodelconditioning_110 = inpaintmodelconditioning.encode( |
|
noise_mask=True, |
|
positive=get_value_at_index(cliptextencode_121, 0), |
|
negative=get_value_at_index(conditioningzeroout_116, 0), |
|
vae=get_value_at_index(vaeloader_10, 0), |
|
pixels=get_value_at_index(imageresize_112, 0), |
|
mask=get_value_at_index(maskblur_119, 0), |
|
) |
|
|
|
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]() |
|
unetloader_111 = unetloader.load_unet( |
|
unet_name="FLUX1/flux1-dev.safetensors", weight_dtype="fp8_e4m3fn" |
|
) |
|
|
|
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() |
|
randomnoise_114 = randomnoise.get_noise(noise_seed=random.randint(1, 2**64)) |
|
|
|
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() |
|
ksamplerselect_115 = ksamplerselect.get_sampler(sampler_name="euler") |
|
|
|
applypulidflux = NODE_CLASS_MAPPINGS["ApplyPulidFlux"]() |
|
repeatlatentbatch = NODE_CLASS_MAPPINGS["RepeatLatentBatch"]() |
|
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]() |
|
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() |
|
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() |
|
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() |
|
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]() |
|
|
|
applypulidflux_101 = applypulidflux.apply_pulid_flux( |
|
weight=1.1, |
|
start_at=0, |
|
end_at=1, |
|
fusion="max", |
|
fusion_weight_max=1, |
|
fusion_weight_min=0, |
|
train_step=1000, |
|
use_gray=True, |
|
model=get_value_at_index(unetloader_111, 0), |
|
pulid_flux=get_value_at_index(pulidfluxmodelloader_99, 0), |
|
eva_clip=get_value_at_index(pulidfluxevacliploader_100, 0), |
|
face_analysis=get_value_at_index(pulidfluxinsightfaceloader_98, 0), |
|
image=get_value_at_index(loadimage_97, 0), |
|
unique_id=12000670301720322250, |
|
) |
|
|
|
repeatlatentbatch_107 = repeatlatentbatch.repeat( |
|
amount=1, samples=get_value_at_index(inpaintmodelconditioning_110, 2) |
|
) |
|
|
|
basicguider_117 = basicguider.get_guider( |
|
model=get_value_at_index(applypulidflux_101, 0), |
|
conditioning=get_value_at_index(inpaintmodelconditioning_110, 0), |
|
) |
|
|
|
basicscheduler_130 = basicscheduler.get_sigmas( |
|
scheduler="normal", |
|
steps=14, |
|
denoise=0.6, |
|
model=get_value_at_index(unetloader_111, 0), |
|
) |
|
|
|
samplercustomadvanced_109 = samplercustomadvanced.sample( |
|
noise=get_value_at_index(randomnoise_114, 0), |
|
guider=get_value_at_index(basicguider_117, 0), |
|
sampler=get_value_at_index(ksamplerselect_115, 0), |
|
sigmas=get_value_at_index(basicscheduler_130, 0), |
|
latent_image=get_value_at_index(repeatlatentbatch_107, 0), |
|
) |
|
|
|
vaedecode_122 = vaedecode.decode( |
|
samples=get_value_at_index(samplercustomadvanced_109, 0), |
|
vae=get_value_at_index(vaeloader_10, 0), |
|
) |
|
|
|
saveimage_127 = saveimage.save_images( |
|
filename_prefix="ComfyUI", images=get_value_at_index(vaedecode_122, 0) |
|
) |
|
saved_path = f"output/{saveimage_127['ui']['images'][0]['filename']}" |
|
return saved_path |
|
|
|
|
|
|
|
|
|
|