|
import nodes |
|
import torch |
|
import comfy.model_management |
|
import comfy.utils |
|
|
|
|
|
class EmptyCosmosLatentVideo: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "width": ("INT", {"default": 1280, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), |
|
"height": ("INT", {"default": 704, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), |
|
"length": ("INT", {"default": 121, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "generate" |
|
|
|
CATEGORY = "latent/video" |
|
|
|
def generate(self, width, height, length, batch_size=1): |
|
latent = torch.zeros([batch_size, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) |
|
return ({"samples": latent}, ) |
|
|
|
|
|
def vae_encode_with_padding(vae, image, width, height, length, padding=0): |
|
pixels = comfy.utils.common_upscale(image[..., :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) |
|
pixel_len = min(pixels.shape[0], length) |
|
padded_length = min(length, (((pixel_len - 1) // 8) + 1 + padding) * 8 - 7) |
|
padded_pixels = torch.ones((padded_length, height, width, 3)) * 0.5 |
|
padded_pixels[:pixel_len] = pixels[:pixel_len] |
|
latent_len = ((pixel_len - 1) // 8) + 1 |
|
latent_temp = vae.encode(padded_pixels) |
|
return latent_temp[:, :, :latent_len] |
|
|
|
|
|
class CosmosImageToVideoLatent: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"vae": ("VAE", ), |
|
"width": ("INT", {"default": 1280, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), |
|
"height": ("INT", {"default": 704, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), |
|
"length": ("INT", {"default": 121, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), |
|
}, |
|
"optional": {"start_image": ("IMAGE", ), |
|
"end_image": ("IMAGE", ), |
|
}} |
|
|
|
|
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "conditioning/inpaint" |
|
|
|
def encode(self, vae, width, height, length, batch_size, start_image=None, end_image=None): |
|
latent = torch.zeros([1, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) |
|
if start_image is None and end_image is None: |
|
out_latent = {} |
|
out_latent["samples"] = latent |
|
return (out_latent,) |
|
|
|
mask = torch.ones([latent.shape[0], 1, ((length - 1) // 8) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device()) |
|
|
|
if start_image is not None: |
|
latent_temp = vae_encode_with_padding(vae, start_image, width, height, length, padding=1) |
|
latent[:, :, :latent_temp.shape[-3]] = latent_temp |
|
mask[:, :, :latent_temp.shape[-3]] *= 0.0 |
|
|
|
if end_image is not None: |
|
latent_temp = vae_encode_with_padding(vae, end_image, width, height, length, padding=0) |
|
latent[:, :, -latent_temp.shape[-3]:] = latent_temp |
|
mask[:, :, -latent_temp.shape[-3]:] *= 0.0 |
|
|
|
out_latent = {} |
|
out_latent["samples"] = latent.repeat((batch_size, ) + (1,) * (latent.ndim - 1)) |
|
out_latent["noise_mask"] = mask.repeat((batch_size, ) + (1,) * (mask.ndim - 1)) |
|
return (out_latent,) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"EmptyCosmosLatentVideo": EmptyCosmosLatentVideo, |
|
"CosmosImageToVideoLatent": CosmosImageToVideoLatent, |
|
} |
|
|