from transformers import AutoTokenizer, TextStreamer from PIL import Image import torch from threading import Thread import gradio as gr from gradio import FileData import time import spaces from unsloth import FastVisionModel # Load model and tokenizer ckpt = "Daemontatox/DocumentLlama" model, tokenizer = FastVisionModel.from_pretrained( ckpt, load_in_4bit=True, use_gradient_checkpointing="unsloth", ) # Enable inference mode FastVisionModel.for_inference(model) @spaces.GPU() def bot_streaming(message, history, max_new_tokens=2048): txt = message["text"] messages = [] images = [] # Process history for i, msg in enumerate(history): if isinstance(msg[0], tuple): messages.append({ "role": "user", "content": [ {"type": "text", "text": history[i+1][0]}, {"type": "image"} ] }) messages.append({ "role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}] }) images.append(Image.open(msg[0][0]).convert("RGB")) elif isinstance(history[i-1], tuple) and isinstance(msg[0], str): pass elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): messages.append({ "role": "user", "content": [{"type": "text", "text": msg[0]}] }) messages.append({ "role": "assistant", "content": [{"type": "text", "text": msg[1]}] }) # Handle current message if len(message["files"]) == 1: if isinstance(message["files"][0], str): # examples image = Image.open(message["files"][0]).convert("RGB") else: # regular input image = Image.open(message["files"][0]["path"]).convert("RGB") images.append(image) messages.append({ "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": txt} ] }) else: messages.append({ "role": "user", "content": [{"type": "text", "text": txt}] }) # Prepare inputs input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True) if images: inputs = tokenizer( images[-1], # Use the last image input_text, add_special_tokens=False, return_tensors="pt" ).to("cuda") else: inputs = tokenizer( input_text, add_special_tokens=False, return_tensors="pt" ).to("cuda") # Setup streaming text_streamer = TextStreamer(tokenizer, skip_prompt=True) buffer = "" def generate(): nonlocal buffer output_ids = model.generate( **inputs, streamer=text_streamer, max_new_tokens=max_new_tokens, use_cache=True, temperature=1.5, min_p=0.1 ) thread = Thread(target=generate) thread.start() for new_text in text_streamer: buffer += new_text time.sleep(0.01) yield buffer # Setup Gradio interface demo = gr.ChatInterface( fn=bot_streaming, title="Document Analyzer", examples=[ [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200], [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250], [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250], [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250], [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250], ], textbox=gr.MultimodalTextbox(), additional_inputs=[ gr.Slider( minimum=10, maximum=500, value=2048, step=10, label="Maximum number of new tokens to generate", ) ], cache_examples=False, description="MllM", stop_btn="Stop Generation", fill_height=True, multimodal=True ) demo.launch(debug=True)