Create oldapp.py
Browse files
oldapp.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
import random
|
4 |
+
import textwrap
|
5 |
+
|
6 |
+
# Define the model to be used
|
7 |
+
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
8 |
+
client = InferenceClient(model)
|
9 |
+
|
10 |
+
# Embedded system prompt
|
11 |
+
system_prompt_text = "You are a smart and helpful co-worker of Thailand based multi-national company PTT, and PTTEP. You help with any kind of request and provide a detailed answer to the question. But if you are asked about something unethical or dangerous, you must refuse and provide a safe and respectful way to handle that."
|
12 |
+
|
13 |
+
# Read the content of the info.md file
|
14 |
+
with open("info.md", "r") as file:
|
15 |
+
info_md_content = file.read()
|
16 |
+
|
17 |
+
# Chunk the info.md content into smaller sections
|
18 |
+
chunk_size = 2500 # Adjust this size as needed
|
19 |
+
info_md_chunks = textwrap.wrap(info_md_content, chunk_size)
|
20 |
+
|
21 |
+
def get_all_chunks(chunks):
|
22 |
+
return "\n\n".join(chunks)
|
23 |
+
|
24 |
+
def format_prompt_mixtral(message, history, info_md_chunks):
|
25 |
+
prompt = "<s>"
|
26 |
+
all_chunks = get_all_chunks(info_md_chunks)
|
27 |
+
prompt += f"{all_chunks}\n\n" # Add all chunks of info.md at the beginning
|
28 |
+
prompt += f"{system_prompt_text}\n\n" # Add the system prompt
|
29 |
+
|
30 |
+
if history:
|
31 |
+
for user_prompt, bot_response in history:
|
32 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
33 |
+
prompt += f" {bot_response}</s> "
|
34 |
+
prompt += f"[INST] {message} [/INST]"
|
35 |
+
return prompt
|
36 |
+
|
37 |
+
def chat_inf(prompt, history, seed, temp, tokens, top_p, rep_p):
|
38 |
+
generate_kwargs = dict(
|
39 |
+
temperature=temp,
|
40 |
+
max_new_tokens=tokens,
|
41 |
+
top_p=top_p,
|
42 |
+
repetition_penalty=rep_p,
|
43 |
+
do_sample=True,
|
44 |
+
seed=seed,
|
45 |
+
)
|
46 |
+
|
47 |
+
formatted_prompt = format_prompt_mixtral(prompt, history, info_md_chunks)
|
48 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
49 |
+
output = ""
|
50 |
+
for response in stream:
|
51 |
+
output += response.token.text
|
52 |
+
yield [(prompt, output)]
|
53 |
+
history.append((prompt, output))
|
54 |
+
yield history
|
55 |
+
|
56 |
+
def clear_fn():
|
57 |
+
return None, None
|
58 |
+
|
59 |
+
rand_val = random.randint(1, 1111111111111111)
|
60 |
+
|
61 |
+
def check_rand(inp, val):
|
62 |
+
if inp:
|
63 |
+
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
|
64 |
+
else:
|
65 |
+
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
66 |
+
|
67 |
+
with gr.Blocks() as app: # Add auth here
|
68 |
+
gr.HTML("""<center><h1 style='font-size:xx-large;'>PTT Chatbot</h1><br><h3>running on Huggingface Inference </h3><br><h7>EXPERIMENTAL</center>""")
|
69 |
+
with gr.Row():
|
70 |
+
chat = gr.Chatbot(height=500)
|
71 |
+
with gr.Group():
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column(scale=3):
|
74 |
+
inp = gr.Textbox(label="Prompt", lines=5, interactive=True) # Increased lines and interactive
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column(scale=2):
|
77 |
+
btn = gr.Button("Chat")
|
78 |
+
with gr.Column(scale=1):
|
79 |
+
with gr.Group():
|
80 |
+
stop_btn = gr.Button("Stop")
|
81 |
+
clear_btn = gr.Button("Clear")
|
82 |
+
with gr.Column(scale=1):
|
83 |
+
with gr.Group():
|
84 |
+
rand = gr.Checkbox(label="Random Seed", value=True)
|
85 |
+
seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
|
86 |
+
tokens = gr.Slider(label="Max new tokens", value=3840, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="The maximum number of tokens")
|
87 |
+
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
88 |
+
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
89 |
+
rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
|
90 |
+
|
91 |
+
hid1 = gr.Number(value=1, visible=False)
|
92 |
+
|
93 |
+
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, [inp, chat, seed, temp, tokens, top_p, rep_p], chat)
|
94 |
+
|
95 |
+
stop_btn.click(None, None, None, cancels=[go])
|
96 |
+
clear_btn.click(clear_fn, None, [inp, chat])
|
97 |
+
|
98 |
+
app.queue(default_concurrency_limit=10).launch(share=True, auth=("admin", "0112358"))
|
99 |
+
|