Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import logging | |
import os | |
from langchain_community.document_loaders import PDFPlumberLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_core.vectorstores import InMemoryVectorStore | |
from langchain.embeddings import HuggingFaceEmbeddings | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Page configuration | |
st.set_page_config( | |
page_title="DeepSeek Chatbot with RAG - ruslanmv.com", | |
page_icon="🤖", | |
layout="centered" | |
) | |
# Initialize session state for chat history and vector store | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "vector_store" not in st.session_state: | |
st.session_state.vector_store = None | |
# Set up PDF directory and embedding model | |
pdfs_directory = "./pdfs" | |
os.makedirs(pdfs_directory, exist_ok=True) | |
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") | |
# Sidebar configuration | |
with st.sidebar: | |
st.header("Model Configuration") | |
st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)") | |
# Dropdown to select model | |
model_options = [ | |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", | |
] | |
selected_model = st.selectbox("Select Model", model_options, index=0) | |
system_message = st.text_area( | |
"System Message", | |
value="You are a helpful assistant created by ruslanmv.com. Use the provided context to answer questions clearly and concisely. If the answer isn't in the context, say you don't know.", | |
height=100 | |
) | |
max_tokens = st.slider("Max Tokens", 10, 4000, 100) | |
temperature = st.slider("Temperature", 0.1, 4.0, 0.3) | |
top_p = st.slider("Top-p", 0.1, 1.0, 0.6) | |
# Main interface | |
st.title("🤖 DeepSeek Chatbot with RAG") | |
st.caption("Powered by Hugging Face Inference API - Configure in sidebar") | |
# PDF upload section | |
uploaded_file = st.file_uploader( | |
"Upload a PDF for context", | |
type="pdf", | |
accept_multiple_files=False | |
) | |
if uploaded_file: | |
try: | |
# Save uploaded PDF | |
pdf_path = os.path.join(pdfs_directory, uploaded_file.name) | |
with open(pdf_path, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
# Load and process PDF | |
loader = PDFPlumberLoader(pdf_path) | |
documents = loader.load() | |
# Split text into chunks | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200 | |
) | |
chunks = text_splitter.split_documents(documents) | |
# Create and store vector store | |
vector_store = InMemoryVectorStore.from_documents(chunks, embedding_model) | |
st.session_state.vector_store = vector_store | |
st.success("PDF processed and indexed successfully!") | |
except Exception as e: | |
st.error(f"Error processing PDF: {str(e)}") | |
# Display chat history | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Function to query Hugging Face API | |
def query(payload, api_url): | |
headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"} | |
logger.info(f"Sending request to {api_url} with payload: {payload}") | |
response = requests.post(api_url, headers=headers, json=payload) | |
logger.info(f"Received response: {response.status_code}, {response.text}") | |
try: | |
return response.json() | |
except requests.exceptions.JSONDecodeError: | |
logger.error(f"Failed to decode JSON response: {response.text}") | |
return None | |
# Handle user input | |
if prompt := st.chat_input("Type your message..."): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
try: | |
with st.spinner("Generating response..."): | |
# Check if vector store is available | |
if not st.session_state.vector_store: | |
st.error("Please upload a PDF first to provide context.") | |
st.stop() | |
# Retrieve relevant documents | |
vector_store = st.session_state.vector_store | |
related_docs = vector_store.similarity_search(prompt, k=3) | |
# Build context | |
context = "\n\n".join([doc.page_content for doc in related_docs]) | |
# Prepare full prompt | |
full_prompt = ( | |
f"{system_message}\n\n" | |
f"Context: {context}\n\n" | |
f"User: {prompt}\n" | |
"Assistant:" | |
) | |
# Prepare API payload | |
payload = { | |
"inputs": full_prompt, | |
"parameters": { | |
"max_new_tokens": max_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
"return_full_text": False | |
} | |
} | |
# Query API | |
api_url = f"https://api-inference.huggingface.co/models/{selected_model}" | |
output = query(payload, api_url) | |
# Handle response | |
if output and isinstance(output, list) and len(output) > 0: | |
if 'generated_text' in output[0]: | |
assistant_response = output[0]['generated_text'].strip() | |
with st.chat_message("assistant"): | |
st.markdown(assistant_response) | |
st.session_state.messages.append({ | |
"role": "assistant", | |
"content": assistant_response | |
}) | |
else: | |
st.error("Unexpected response format from the model") | |
else: | |
st.error("No response generated - please try again") | |
except Exception as e: | |
logger.error(f"Error: {str(e)}", exc_info=True) | |
st.error(f"An error occurred: {str(e)}") |