Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import math | |
| import torch | |
| import torch.nn as nn | |
| # FFN | |
| def FeedForward(dim, mult=4): | |
| inner_dim = int(dim * mult) | |
| return nn.Sequential( | |
| nn.LayerNorm(dim), | |
| nn.Linear(dim, inner_dim, bias=False), | |
| nn.GELU(), | |
| nn.Linear(inner_dim, dim, bias=False), | |
| ) | |
| def reshape_tensor(x, heads): | |
| bs, length, width = x.shape | |
| # (bs, length, width) --> (bs, length, n_heads, dim_per_head) | |
| x = x.view(bs, length, heads, -1) | |
| # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) | |
| x = x.transpose(1, 2) | |
| # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) | |
| x = x.reshape(bs, heads, length, -1) | |
| return x | |
| class PerceiverAttentionCA(nn.Module): | |
| def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048): | |
| super().__init__() | |
| self.scale = dim_head ** -0.5 | |
| self.dim_head = dim_head | |
| self.heads = heads | |
| inner_dim = dim_head * heads | |
| self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) | |
| self.norm2 = nn.LayerNorm(dim) | |
| self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) | |
| self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
| def forward(self, x, latents): | |
| """ | |
| Args: | |
| x (torch.Tensor): image features | |
| shape (b, n1, D) | |
| latent (torch.Tensor): latent features | |
| shape (b, n2, D) | |
| """ | |
| x = self.norm1(x) | |
| latents = self.norm2(latents) | |
| b, seq_len, _ = latents.shape | |
| q = self.to_q(latents) | |
| k, v = self.to_kv(x).chunk(2, dim=-1) | |
| q = reshape_tensor(q, self.heads) | |
| k = reshape_tensor(k, self.heads) | |
| v = reshape_tensor(v, self.heads) | |
| # attention | |
| scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
| weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards | |
| weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
| out = weight @ v | |
| out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) | |
| return self.to_out(out) | |
| class PerceiverAttention(nn.Module): | |
| def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None): | |
| super().__init__() | |
| self.scale = dim_head ** -0.5 | |
| self.dim_head = dim_head | |
| self.heads = heads | |
| inner_dim = dim_head * heads | |
| self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) | |
| self.norm2 = nn.LayerNorm(dim) | |
| self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) | |
| self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
| def forward(self, x, latents): | |
| """ | |
| Args: | |
| x (torch.Tensor): image features | |
| shape (b, n1, D) | |
| latent (torch.Tensor): latent features | |
| shape (b, n2, D) | |
| """ | |
| x = self.norm1(x) | |
| latents = self.norm2(latents) | |
| b, seq_len, _ = latents.shape | |
| q = self.to_q(latents) | |
| kv_input = torch.cat((x, latents), dim=-2) | |
| k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
| q = reshape_tensor(q, self.heads) | |
| k = reshape_tensor(k, self.heads) | |
| v = reshape_tensor(v, self.heads) | |
| # attention | |
| scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
| weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards | |
| weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
| out = weight @ v | |
| out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) | |
| return self.to_out(out) | |
| class IDFormer(nn.Module): | |
| """ | |
| - perceiver resampler like arch (compared with previous MLP-like arch) | |
| - we concat id embedding (generated by arcface) and query tokens as latents | |
| - latents will attend each other and interact with vit features through cross-attention | |
| - vit features are multi-scaled and inserted into IDFormer in order, currently, each scale corresponds to two | |
| IDFormer layers | |
| """ | |
| def __init__( | |
| self, | |
| dim=1024, | |
| depth=10, | |
| dim_head=64, | |
| heads=16, | |
| num_id_token=5, | |
| num_queries=32, | |
| output_dim=2048, | |
| ff_mult=4, | |
| ): | |
| super().__init__() | |
| self.num_id_token = num_id_token | |
| self.dim = dim | |
| self.num_queries = num_queries | |
| assert depth % 5 == 0 | |
| self.depth = depth // 5 | |
| scale = dim ** -0.5 | |
| self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale) | |
| self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim)) | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append( | |
| nn.ModuleList( | |
| [ | |
| PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
| FeedForward(dim=dim, mult=ff_mult), | |
| ] | |
| ) | |
| ) | |
| for i in range(5): | |
| setattr( | |
| self, | |
| f'mapping_{i}', | |
| nn.Sequential( | |
| nn.Linear(1024, 1024), | |
| nn.LayerNorm(1024), | |
| nn.LeakyReLU(), | |
| nn.Linear(1024, 1024), | |
| nn.LayerNorm(1024), | |
| nn.LeakyReLU(), | |
| nn.Linear(1024, dim), | |
| ), | |
| ) | |
| self.id_embedding_mapping = nn.Sequential( | |
| nn.Linear(1280, 1024), | |
| nn.LayerNorm(1024), | |
| nn.LeakyReLU(), | |
| nn.Linear(1024, 1024), | |
| nn.LayerNorm(1024), | |
| nn.LeakyReLU(), | |
| nn.Linear(1024, dim * num_id_token), | |
| ) | |
| def forward(self, x, y): | |
| latents = self.latents.repeat(x.size(0), 1, 1) | |
| x = self.id_embedding_mapping(x) | |
| x = x.reshape(-1, self.num_id_token, self.dim) | |
| latents = torch.cat((latents, x), dim=1) | |
| for i in range(5): | |
| vit_feature = getattr(self, f'mapping_{i}')(y[i]) | |
| ctx_feature = torch.cat((x, vit_feature), dim=1) | |
| for attn, ff in self.layers[i * self.depth: (i + 1) * self.depth]: | |
| latents = attn(ctx_feature, latents) + latents | |
| latents = ff(latents) + latents | |
| latents = latents[:, :self.num_queries] | |
| latents = latents @ self.proj_out | |
| return latents | |
