AkashiCoin commited on
Commit
f0ebdad
·
1 Parent(s): 0129549
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +8 -23
  2. FAQ.md +9 -0
  3. LICENSE +29 -0
  4. MANIFEST.in +8 -0
  5. README.md +28 -7
  6. Training.md +100 -0
  7. VERSION +1 -0
  8. anime.png +0 -0
  9. app.py +68 -0
  10. experiments/.DS_Store +0 -0
  11. experiments/pretrained_models/README.md +1 -0
  12. inference_realesrgan.py +128 -0
  13. inference_realesrgan_video.py +199 -0
  14. options/finetune_realesrgan_x4plus.yml +188 -0
  15. options/finetune_realesrgan_x4plus_pairdata.yml +150 -0
  16. options/setup.cfg +33 -0
  17. options/train_realesrgan_x2plus.yml +186 -0
  18. options/train_realesrgan_x4plus.yml +185 -0
  19. options/train_realesrnet_x2plus.yml +145 -0
  20. options/train_realesrnet_x4plus.yml +144 -0
  21. packages.txt +3 -0
  22. realesrgan/__init__.py +6 -0
  23. realesrgan/archs/__init__.py +10 -0
  24. realesrgan/archs/discriminator_arch.py +67 -0
  25. realesrgan/archs/srvgg_arch.py +69 -0
  26. realesrgan/data/__init__.py +10 -0
  27. realesrgan/data/realesrgan_dataset.py +192 -0
  28. realesrgan/data/realesrgan_paired_dataset.py +108 -0
  29. realesrgan/models/__init__.py +10 -0
  30. realesrgan/models/realesrgan_model.py +258 -0
  31. realesrgan/models/realesrnet_model.py +188 -0
  32. realesrgan/train.py +11 -0
  33. realesrgan/utils.py +280 -0
  34. realesrgan/weights/README.md +3 -0
  35. requirements.txt +18 -0
  36. scripts/extract_subimages.py +135 -0
  37. scripts/generate_meta_info.py +58 -0
  38. scripts/generate_meta_info_pairdata.py +49 -0
  39. scripts/generate_multiscale_DF2K.py +48 -0
  40. scripts/pytorch2onnx.py +36 -0
  41. setup.cfg +22 -0
  42. setup.py +107 -0
  43. tests/data/gt.lmdb/data.mdb +0 -0
  44. tests/data/gt.lmdb/lock.mdb +0 -0
  45. tests/data/gt.lmdb/meta_info.txt +2 -0
  46. tests/data/gt/baboon.png +0 -0
  47. tests/data/gt/comic.png +0 -0
  48. tests/data/lq.lmdb/data.mdb +0 -0
  49. tests/data/lq.lmdb/lock.mdb +0 -0
  50. tests/data/lq.lmdb/meta_info.txt +2 -0
.gitattributes CHANGED
@@ -1,31 +1,16 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
  *.h5 filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
8
  *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
  *.model filter=lfs diff=lfs merge=lfs -text
11
  *.msgpack filter=lfs diff=lfs merge=lfs -text
12
- *.npy filter=lfs diff=lfs merge=lfs -text
13
- *.npz filter=lfs diff=lfs merge=lfs -text
14
- *.onnx filter=lfs diff=lfs merge=lfs -text
15
- *.ot filter=lfs diff=lfs merge=lfs -text
16
- *.parquet filter=lfs diff=lfs merge=lfs -text
17
- *.pickle filter=lfs diff=lfs merge=lfs -text
18
- *.pkl filter=lfs diff=lfs merge=lfs -text
19
  *.pb filter=lfs diff=lfs merge=lfs -text
20
  *.pt filter=lfs diff=lfs merge=lfs -text
21
  *.pth filter=lfs diff=lfs merge=lfs -text
22
- *.rar filter=lfs diff=lfs merge=lfs -text
23
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
24
- *.tar.* filter=lfs diff=lfs merge=lfs -text
25
- *.tflite filter=lfs diff=lfs merge=lfs -text
26
- *.tgz filter=lfs diff=lfs merge=lfs -text
27
- *.wasm filter=lfs diff=lfs merge=lfs -text
28
- *.xz filter=lfs diff=lfs merge=lfs -text
29
- *.zip filter=lfs diff=lfs merge=lfs -text
30
- *.zst filter=lfs diff=lfs merge=lfs -text
31
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
 
 
4
  *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.arrow filter=lfs diff=lfs merge=lfs -text
10
+ *.ftz filter=lfs diff=lfs merge=lfs -text
11
  *.joblib filter=lfs diff=lfs merge=lfs -text
 
12
  *.model filter=lfs diff=lfs merge=lfs -text
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
14
  *.pb filter=lfs diff=lfs merge=lfs -text
15
  *.pt filter=lfs diff=lfs merge=lfs -text
16
  *.pth filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
FAQ.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # FAQ
2
+
3
+ 1. **What is the difference of `--netscale` and `outscale`?**
4
+
5
+ A: TODO.
6
+
7
+ 1. **How to select models?**
8
+
9
+ A: TODO.
LICENSE ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2021, Xintao Wang
4
+ All rights reserved.
5
+
6
+ Redistribution and use in source and binary forms, with or without
7
+ modification, are permitted provided that the following conditions are met:
8
+
9
+ 1. Redistributions of source code must retain the above copyright notice, this
10
+ list of conditions and the following disclaimer.
11
+
12
+ 2. Redistributions in binary form must reproduce the above copyright notice,
13
+ this list of conditions and the following disclaimer in the documentation
14
+ and/or other materials provided with the distribution.
15
+
16
+ 3. Neither the name of the copyright holder nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
MANIFEST.in ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ include assets/*
2
+ include inputs/*
3
+ include scripts/*.py
4
+ include inference_realesrgan.py
5
+ include VERSION
6
+ include LICENSE
7
+ include requirements.txt
8
+ include realesrgan/weights/README.md
README.md CHANGED
@@ -1,13 +1,34 @@
1
  ---
2
  title: Real ESRGAN
3
- emoji: 📈
4
- colorFrom: purple
5
- colorTo: green
6
- sdk: streamlit
7
- sdk_version: 1.10.0
8
  app_file: app.py
9
  pinned: false
10
- license: bsd-3-clause
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: Real ESRGAN
3
+ emoji: 🏃
4
+ colorFrom: blue
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 3.1.7
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
+ # Configuration
13
+
14
+ `title`: _string_
15
+ Display title for the Space
16
+
17
+ `emoji`: _string_
18
+ Space emoji (emoji-only character allowed)
19
+
20
+ `colorFrom`: _string_
21
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
22
+
23
+ `colorTo`: _string_
24
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
25
+
26
+ `sdk`: _string_
27
+ Can be either `gradio` or `streamlit`
28
+
29
+ `app_file`: _string_
30
+ Path to your main application file (which contains either `gradio` or `streamlit` Python code).
31
+ Path is relative to the root of the repository.
32
+
33
+ `pinned`: _boolean_
34
+ Whether the Space stays on top of your list.
Training.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # :computer: How to Train Real-ESRGAN
2
+
3
+ The training codes have been released. <br>
4
+ Note that the codes have a lot of refactoring. So there may be some bugs/performance drops. Welcome to report issues and I will also retrain the models.
5
+
6
+ ## Overview
7
+
8
+ The training has been divided into two stages. These two stages have the same data synthesis process and training pipeline, except for the loss functions. Specifically,
9
+
10
+ 1. We first train Real-ESRNet with L1 loss from the pre-trained model ESRGAN.
11
+ 1. We then use the trained Real-ESRNet model as an initialization of the generator, and train the Real-ESRGAN with a combination of L1 loss, perceptual loss and GAN loss.
12
+
13
+ ## Dataset Preparation
14
+
15
+ We use DF2K (DIV2K and Flickr2K) + OST datasets for our training. Only HR images are required. <br>
16
+ You can download from :
17
+
18
+ 1. DIV2K: http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip
19
+ 2. Flickr2K: https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar
20
+ 3. OST: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/datasets/OST_dataset.zip
21
+
22
+ For the DF2K dataset, we use a multi-scale strategy, *i.e.*, we downsample HR images to obtain several Ground-Truth images with different scales.
23
+
24
+ We then crop DF2K images into sub-images for faster IO and processing.
25
+
26
+ You need to prepare a txt file containing the image paths. The following are some examples in `meta_info_DF2Kmultiscale+OST_sub.txt` (As different users may have different sub-images partitions, this file is not suitable for your purpose and you need to prepare your own txt file):
27
+
28
+ ```txt
29
+ DF2K_HR_sub/000001_s001.png
30
+ DF2K_HR_sub/000001_s002.png
31
+ DF2K_HR_sub/000001_s003.png
32
+ ...
33
+ ```
34
+
35
+ ## Train Real-ESRNet
36
+
37
+ 1. Download pre-trained model [ESRGAN](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth) into `experiments/pretrained_models`.
38
+ ```bash
39
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth -P experiments/pretrained_models
40
+ ```
41
+ 1. Modify the content in the option file `options/train_realesrnet_x4plus.yml` accordingly:
42
+ ```yml
43
+ train:
44
+ name: DF2K+OST
45
+ type: RealESRGANDataset
46
+ dataroot_gt: datasets/DF2K # modify to the root path of your folder
47
+ meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt # modify to your own generate meta info txt
48
+ io_backend:
49
+ type: disk
50
+ ```
51
+ 1. If you want to perform validation during training, uncomment those lines and modify accordingly:
52
+ ```yml
53
+ # Uncomment these for validation
54
+ # val:
55
+ # name: validation
56
+ # type: PairedImageDataset
57
+ # dataroot_gt: path_to_gt
58
+ # dataroot_lq: path_to_lq
59
+ # io_backend:
60
+ # type: disk
61
+
62
+ ...
63
+
64
+ # Uncomment these for validation
65
+ # validation settings
66
+ # val:
67
+ # val_freq: !!float 5e3
68
+ # save_img: True
69
+
70
+ # metrics:
71
+ # psnr: # metric name, can be arbitrary
72
+ # type: calculate_psnr
73
+ # crop_border: 4
74
+ # test_y_channel: false
75
+ ```
76
+ 1. Before the formal training, you may run in the `--debug` mode to see whether everything is OK. We use four GPUs for training:
77
+ ```bash
78
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
79
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --debug
80
+ ```
81
+ 1. The formal training. We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary.
82
+ ```bash
83
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
84
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --auto_resume
85
+ ```
86
+
87
+ ## Train Real-ESRGAN
88
+
89
+ 1. After the training of Real-ESRNet, you now have the file `experiments/train_RealESRNetx4plus_1000k_B12G4_fromESRGAN/model/net_g_1000000.pth`. If you need to specify the pre-trained path to other files, modify the `pretrain_network_g` value in the option file `train_realesrgan_x4plus.yml`.
90
+ 1. Modify the option file `train_realesrgan_x4plus.yml` accordingly. Most modifications are similar to those listed above.
91
+ 1. Before the formal training, you may run in the `--debug` mode to see whether everything is OK. We use four GPUs for training:
92
+ ```bash
93
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
94
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --debug
95
+ ```
96
+ 1. The formal training. We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary.
97
+ ```bash
98
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
99
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --auto_resume
100
+ ```
VERSION ADDED
@@ -0,0 +1 @@
 
 
1
+ 0.2.3.0
anime.png ADDED
app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.system("pip install gradio==2.9b23")
3
+ import random
4
+ import gradio as gr
5
+ from PIL import Image
6
+ import torch
7
+ from random import randint
8
+ import sys
9
+ from subprocess import call
10
+ import psutil
11
+
12
+
13
+
14
+
15
+ torch.hub.download_url_to_file('http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution_files/100075_lowres.jpg', 'bear.jpg')
16
+
17
+
18
+ def run_cmd(command):
19
+ try:
20
+ print(command)
21
+ call(command, shell=True)
22
+ except KeyboardInterrupt:
23
+ print("Process interrupted")
24
+ sys.exit(1)
25
+ run_cmd("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P .")
26
+ run_cmd("pip install basicsr")
27
+ run_cmd("pip freeze")
28
+
29
+ os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P .")
30
+
31
+
32
+ def inference(img,mode):
33
+ _id = randint(1, 10000)
34
+ INPUT_DIR = "/tmp/input_image" + str(_id) + "/"
35
+ OUTPUT_DIR = "/tmp/output_image" + str(_id) + "/"
36
+ run_cmd("rm -rf " + INPUT_DIR)
37
+ run_cmd("rm -rf " + OUTPUT_DIR)
38
+ run_cmd("mkdir " + INPUT_DIR)
39
+ run_cmd("mkdir " + OUTPUT_DIR)
40
+ basewidth = 256
41
+ wpercent = (basewidth/float(img.size[0]))
42
+ hsize = int((float(img.size[1])*float(wpercent)))
43
+ img = img.resize((basewidth,hsize), Image.ANTIALIAS)
44
+ img.save(INPUT_DIR + "1.jpg", "JPEG")
45
+ if mode == "base":
46
+ run_cmd("python inference_realesrgan.py -n RealESRGAN_x4plus -i "+ INPUT_DIR + " -o " + OUTPUT_DIR)
47
+ else:
48
+ os.system("python inference_realesrgan.py -n RealESRGAN_x4plus_anime_6B -i "+ INPUT_DIR + " -o " + OUTPUT_DIR)
49
+ return os.path.join(OUTPUT_DIR, "1_out.jpg")
50
+
51
+
52
+
53
+
54
+ title = "Real-ESRGAN"
55
+ description = "Gradio demo for Real-ESRGAN. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please click submit only once"
56
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/xinntao/Real-ESRGAN'>Github Repo</a></p>"
57
+
58
+ gr.Interface(
59
+ inference,
60
+ [gr.inputs.Image(type="pil", label="Input"),gr.inputs.Radio(["base","anime"], type="value", default="base", label="model type")],
61
+ gr.outputs.Image(type="file", label="Output"),
62
+ title=title,
63
+ description=description,
64
+ article=article,
65
+ examples=[
66
+ ['bear.jpg','base'],
67
+ ['anime.png','anime']
68
+ ]).launch()
experiments/.DS_Store ADDED
Binary file (6.15 kB). View file
 
experiments/pretrained_models/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # Put downloaded pre-trained models here
inference_realesrgan.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import cv2
3
+ import glob
4
+ import os
5
+ from basicsr.archs.rrdbnet_arch import RRDBNet
6
+
7
+ from realesrgan import RealESRGANer
8
+ from realesrgan.archs.srvgg_arch import SRVGGNetCompact
9
+
10
+
11
+ def main():
12
+ """Inference demo for Real-ESRGAN.
13
+ """
14
+ parser = argparse.ArgumentParser()
15
+ parser.add_argument('-i', '--input', type=str, default='inputs', help='Input image or folder')
16
+ parser.add_argument(
17
+ '-n',
18
+ '--model_name',
19
+ type=str,
20
+ default='RealESRGAN_x4plus',
21
+ help=('Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus'
22
+ 'RealESRGANv2-anime-xsx2 | RealESRGANv2-animevideo-xsx2-nousm | RealESRGANv2-animevideo-xsx2'
23
+ 'RealESRGANv2-anime-xsx4 | RealESRGANv2-animevideo-xsx4-nousm | RealESRGANv2-animevideo-xsx4'))
24
+ parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
25
+ parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
26
+ parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image')
27
+ parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
28
+ parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
29
+ parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
30
+ parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
31
+ parser.add_argument('--half', action='store_true', help='Use half precision during inference')
32
+ parser.add_argument(
33
+ '--alpha_upsampler',
34
+ type=str,
35
+ default='realesrgan',
36
+ help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
37
+ parser.add_argument(
38
+ '--ext',
39
+ type=str,
40
+ default='auto',
41
+ help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
42
+ args = parser.parse_args()
43
+
44
+ # determine models according to model names
45
+ args.model_name = args.model_name.split('.')[0]
46
+ if args.model_name in ['RealESRGAN_x4plus', 'RealESRNet_x4plus']: # x4 RRDBNet model
47
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
48
+ netscale = 4
49
+ elif args.model_name in ['RealESRGAN_x4plus_anime_6B']: # x4 RRDBNet model with 6 blocks
50
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
51
+ netscale = 4
52
+ elif args.model_name in ['RealESRGAN_x2plus']: # x2 RRDBNet model
53
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
54
+ netscale = 2
55
+ elif args.model_name in [
56
+ 'RealESRGANv2-anime-xsx2', 'RealESRGANv2-animevideo-xsx2-nousm', 'RealESRGANv2-animevideo-xsx2'
57
+ ]: # x2 VGG-style model (XS size)
58
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu')
59
+ netscale = 2
60
+ elif args.model_name in [
61
+ 'RealESRGANv2-anime-xsx4', 'RealESRGANv2-animevideo-xsx4-nousm', 'RealESRGANv2-animevideo-xsx4'
62
+ ]: # x4 VGG-style model (XS size)
63
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
64
+ netscale = 4
65
+
66
+ # determine model paths
67
+ model_path = os.path.join('.', args.model_name + '.pth')
68
+ if not os.path.isfile(model_path):
69
+ model_path = os.path.join('.', args.model_name + '.pth')
70
+ if not os.path.isfile(model_path):
71
+ raise ValueError(f'Model {args.model_name} does not exist.')
72
+
73
+ # restorer
74
+ upsampler = RealESRGANer(
75
+ scale=netscale,
76
+ model_path=model_path,
77
+ model=model,
78
+ tile=args.tile,
79
+ tile_pad=args.tile_pad,
80
+ pre_pad=args.pre_pad,
81
+ half=args.half)
82
+
83
+ if args.face_enhance: # Use GFPGAN for face enhancement
84
+ from gfpgan import GFPGANer
85
+ face_enhancer = GFPGANer(
86
+ model_path='https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth',
87
+ upscale=args.outscale,
88
+ arch='clean',
89
+ channel_multiplier=2,
90
+ bg_upsampler=upsampler)
91
+ os.makedirs(args.output, exist_ok=True)
92
+
93
+ if os.path.isfile(args.input):
94
+ paths = [args.input]
95
+ else:
96
+ paths = sorted(glob.glob(os.path.join(args.input, '*')))
97
+
98
+ for idx, path in enumerate(paths):
99
+ imgname, extension = os.path.splitext(os.path.basename(path))
100
+ print('Testing', idx, imgname)
101
+
102
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
103
+ if len(img.shape) == 3 and img.shape[2] == 4:
104
+ img_mode = 'RGBA'
105
+ else:
106
+ img_mode = None
107
+
108
+ try:
109
+ if args.face_enhance:
110
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
111
+ else:
112
+ output, _ = upsampler.enhance(img, outscale=args.outscale)
113
+ except RuntimeError as error:
114
+ print('Error', error)
115
+ print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
116
+ else:
117
+ if args.ext == 'auto':
118
+ extension = extension[1:]
119
+ else:
120
+ extension = args.ext
121
+ if img_mode == 'RGBA': # RGBA images should be saved in png format
122
+ extension = 'png'
123
+ save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}')
124
+ cv2.imwrite(save_path, output)
125
+
126
+
127
+ if __name__ == '__main__':
128
+ main()
inference_realesrgan_video.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import mimetypes
4
+ import os
5
+ import queue
6
+ import shutil
7
+ import torch
8
+ from basicsr.archs.rrdbnet_arch import RRDBNet
9
+ from basicsr.utils.logger import AvgTimer
10
+ from tqdm import tqdm
11
+
12
+ from realesrgan import IOConsumer, PrefetchReader, RealESRGANer
13
+ from realesrgan.archs.srvgg_arch import SRVGGNetCompact
14
+
15
+
16
+ def main():
17
+ """Inference demo for Real-ESRGAN.
18
+ It mainly for restoring anime videos.
19
+
20
+ """
21
+ parser = argparse.ArgumentParser()
22
+ parser.add_argument('-i', '--input', type=str, default='inputs', help='Input image or folder')
23
+ parser.add_argument(
24
+ '-n',
25
+ '--model_name',
26
+ type=str,
27
+ default='RealESRGAN_x4plus',
28
+ help=('Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus'
29
+ 'RealESRGANv2-anime-xsx2 | RealESRGANv2-animevideo-xsx2-nousm | RealESRGANv2-animevideo-xsx2'
30
+ 'RealESRGANv2-anime-xsx4 | RealESRGANv2-animevideo-xsx4-nousm | RealESRGANv2-animevideo-xsx4'))
31
+ parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
32
+ parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
33
+ parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored video')
34
+ parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
35
+ parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
36
+ parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
37
+ parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
38
+ parser.add_argument('--half', action='store_true', help='Use half precision during inference')
39
+ parser.add_argument('-v', '--video', action='store_true', help='Output a video using ffmpeg')
40
+ parser.add_argument('-a', '--audio', action='store_true', help='Keep audio')
41
+ parser.add_argument('--fps', type=float, default=None, help='FPS of the output video')
42
+ parser.add_argument('--consumer', type=int, default=4, help='Number of IO consumers')
43
+
44
+ parser.add_argument(
45
+ '--alpha_upsampler',
46
+ type=str,
47
+ default='realesrgan',
48
+ help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
49
+ parser.add_argument(
50
+ '--ext',
51
+ type=str,
52
+ default='auto',
53
+ help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
54
+ args = parser.parse_args()
55
+
56
+ # ---------------------- determine models according to model names ---------------------- #
57
+ args.model_name = args.model_name.split('.')[0]
58
+ if args.model_name in ['RealESRGAN_x4plus', 'RealESRNet_x4plus']: # x4 RRDBNet model
59
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
60
+ netscale = 4
61
+ elif args.model_name in ['RealESRGAN_x4plus_anime_6B']: # x4 RRDBNet model with 6 blocks
62
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
63
+ netscale = 4
64
+ elif args.model_name in ['RealESRGAN_x2plus']: # x2 RRDBNet model
65
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
66
+ netscale = 2
67
+ elif args.model_name in [
68
+ 'RealESRGANv2-anime-xsx2', 'RealESRGANv2-animevideo-xsx2-nousm', 'RealESRGANv2-animevideo-xsx2'
69
+ ]: # x2 VGG-style model (XS size)
70
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu')
71
+ netscale = 2
72
+ elif args.model_name in [
73
+ 'RealESRGANv2-anime-xsx4', 'RealESRGANv2-animevideo-xsx4-nousm', 'RealESRGANv2-animevideo-xsx4'
74
+ ]: # x4 VGG-style model (XS size)
75
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
76
+ netscale = 4
77
+
78
+ # ---------------------- determine model paths ---------------------- #
79
+ model_path = os.path.join('experiments/pretrained_models', args.model_name + '.pth')
80
+ if not os.path.isfile(model_path):
81
+ model_path = os.path.join('realesrgan/weights', args.model_name + '.pth')
82
+ if not os.path.isfile(model_path):
83
+ raise ValueError(f'Model {args.model_name} does not exist.')
84
+
85
+ # restorer
86
+ upsampler = RealESRGANer(
87
+ scale=netscale,
88
+ model_path=model_path,
89
+ model=model,
90
+ tile=args.tile,
91
+ tile_pad=args.tile_pad,
92
+ pre_pad=args.pre_pad,
93
+ half=args.half)
94
+
95
+ if args.face_enhance: # Use GFPGAN for face enhancement
96
+ from gfpgan import GFPGANer
97
+ face_enhancer = GFPGANer(
98
+ model_path='https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth',
99
+ upscale=args.outscale,
100
+ arch='clean',
101
+ channel_multiplier=2,
102
+ bg_upsampler=upsampler)
103
+ os.makedirs(args.output, exist_ok=True)
104
+ # for saving restored frames
105
+ save_frame_folder = os.path.join(args.output, 'frames_tmpout')
106
+ os.makedirs(save_frame_folder, exist_ok=True)
107
+
108
+ if mimetypes.guess_type(args.input)[0].startswith('video'): # is a video file
109
+ video_name = os.path.splitext(os.path.basename(args.input))[0]
110
+ frame_folder = os.path.join('tmp_frames', video_name)
111
+ os.makedirs(frame_folder, exist_ok=True)
112
+ # use ffmpeg to extract frames
113
+ os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {frame_folder}/frame%08d.png')
114
+ # get image path list
115
+ paths = sorted(glob.glob(os.path.join(frame_folder, '*')))
116
+ if args.video:
117
+ if args.fps is None:
118
+ # get input video fps
119
+ import ffmpeg
120
+ probe = ffmpeg.probe(args.input)
121
+ video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
122
+ args.fps = eval(video_streams[0]['avg_frame_rate'])
123
+ elif mimetypes.guess_type(args.input)[0].startswith('image'): # is an image file
124
+ paths = [args.input]
125
+ video_name = 'video'
126
+ else:
127
+ paths = sorted(glob.glob(os.path.join(args.input, '*')))
128
+ video_name = 'video'
129
+
130
+ timer = AvgTimer()
131
+ timer.start()
132
+ pbar = tqdm(total=len(paths), unit='frame', desc='inference')
133
+ # set up prefetch reader
134
+ reader = PrefetchReader(paths, num_prefetch_queue=4)
135
+ reader.start()
136
+
137
+ que = queue.Queue()
138
+ consumers = [IOConsumer(args, que, f'IO_{i}') for i in range(args.consumer)]
139
+ for consumer in consumers:
140
+ consumer.start()
141
+
142
+ for idx, (path, img) in enumerate(zip(paths, reader)):
143
+ imgname, extension = os.path.splitext(os.path.basename(path))
144
+ if len(img.shape) == 3 and img.shape[2] == 4:
145
+ img_mode = 'RGBA'
146
+ else:
147
+ img_mode = None
148
+
149
+ try:
150
+ if args.face_enhance:
151
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
152
+ else:
153
+ output, _ = upsampler.enhance(img, outscale=args.outscale)
154
+ except RuntimeError as error:
155
+ print('Error', error)
156
+ print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
157
+
158
+ else:
159
+ if args.ext == 'auto':
160
+ extension = extension[1:]
161
+ else:
162
+ extension = args.ext
163
+ if img_mode == 'RGBA': # RGBA images should be saved in png format
164
+ extension = 'png'
165
+ save_path = os.path.join(save_frame_folder, f'{imgname}_out.{extension}')
166
+
167
+ que.put({'output': output, 'save_path': save_path})
168
+
169
+ pbar.update(1)
170
+ torch.cuda.synchronize()
171
+ timer.record()
172
+ avg_fps = 1. / (timer.get_avg_time() + 1e-7)
173
+ pbar.set_description(f'idx {idx}, fps {avg_fps:.2f}')
174
+
175
+ for _ in range(args.consumer):
176
+ que.put('quit')
177
+ for consumer in consumers:
178
+ consumer.join()
179
+ pbar.close()
180
+
181
+ # merge frames to video
182
+ if args.video:
183
+ video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4')
184
+ if args.audio:
185
+ os.system(
186
+ f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} -i {args.input}'
187
+ f' -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}')
188
+ else:
189
+ os.system(f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} '
190
+ f'-c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}')
191
+
192
+ # delete tmp file
193
+ shutil.rmtree(save_frame_folder)
194
+ if os.path.isdir(frame_folder):
195
+ shutil.rmtree(frame_folder)
196
+
197
+
198
+ if __name__ == '__main__':
199
+ main()
options/finetune_realesrgan_x4plus.yml ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: finetune_RealESRGANx4plus_400k
3
+ model_type: RealESRGANModel
4
+ scale: 4
5
+ num_gpu: auto
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRGANModel ----------------- #
9
+ # USM the ground-truth
10
+ l1_gt_usm: True
11
+ percep_gt_usm: True
12
+ gan_gt_usm: False
13
+
14
+ # the first degradation process
15
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
16
+ resize_range: [0.15, 1.5]
17
+ gaussian_noise_prob: 0.5
18
+ noise_range: [1, 30]
19
+ poisson_scale_range: [0.05, 3]
20
+ gray_noise_prob: 0.4
21
+ jpeg_range: [30, 95]
22
+
23
+ # the second degradation process
24
+ second_blur_prob: 0.8
25
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
26
+ resize_range2: [0.3, 1.2]
27
+ gaussian_noise_prob2: 0.5
28
+ noise_range2: [1, 25]
29
+ poisson_scale_range2: [0.05, 2.5]
30
+ gray_noise_prob2: 0.4
31
+ jpeg_range2: [30, 95]
32
+
33
+ gt_size: 256
34
+ queue_size: 180
35
+
36
+ # dataset and data loader settings
37
+ datasets:
38
+ train:
39
+ name: DF2K+OST
40
+ type: RealESRGANDataset
41
+ dataroot_gt: datasets/DF2K
42
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
43
+ io_backend:
44
+ type: disk
45
+
46
+ blur_kernel_size: 21
47
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
48
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
49
+ sinc_prob: 0.1
50
+ blur_sigma: [0.2, 3]
51
+ betag_range: [0.5, 4]
52
+ betap_range: [1, 2]
53
+
54
+ blur_kernel_size2: 21
55
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
56
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
57
+ sinc_prob2: 0.1
58
+ blur_sigma2: [0.2, 1.5]
59
+ betag_range2: [0.5, 4]
60
+ betap_range2: [1, 2]
61
+
62
+ final_sinc_prob: 0.8
63
+
64
+ gt_size: 256
65
+ use_hflip: True
66
+ use_rot: False
67
+
68
+ # data loader
69
+ use_shuffle: true
70
+ num_worker_per_gpu: 5
71
+ batch_size_per_gpu: 12
72
+ dataset_enlarge_ratio: 1
73
+ prefetch_mode: ~
74
+
75
+ # Uncomment these for validation
76
+ # val:
77
+ # name: validation
78
+ # type: PairedImageDataset
79
+ # dataroot_gt: path_to_gt
80
+ # dataroot_lq: path_to_lq
81
+ # io_backend:
82
+ # type: disk
83
+
84
+ # network structures
85
+ network_g:
86
+ type: RRDBNet
87
+ num_in_ch: 3
88
+ num_out_ch: 3
89
+ num_feat: 64
90
+ num_block: 23
91
+ num_grow_ch: 32
92
+
93
+ network_d:
94
+ type: UNetDiscriminatorSN
95
+ num_in_ch: 3
96
+ num_feat: 64
97
+ skip_connection: True
98
+
99
+ # path
100
+ path:
101
+ # use the pre-trained Real-ESRNet model
102
+ pretrain_network_g: experiments/pretrained_models/RealESRNet_x4plus.pth
103
+ param_key_g: params_ema
104
+ strict_load_g: true
105
+ pretrain_network_d: experiments/pretrained_models/RealESRGAN_x4plus_netD.pth
106
+ param_key_d: params
107
+ strict_load_d: true
108
+ resume_state: ~
109
+
110
+ # training settings
111
+ train:
112
+ ema_decay: 0.999
113
+ optim_g:
114
+ type: Adam
115
+ lr: !!float 1e-4
116
+ weight_decay: 0
117
+ betas: [0.9, 0.99]
118
+ optim_d:
119
+ type: Adam
120
+ lr: !!float 1e-4
121
+ weight_decay: 0
122
+ betas: [0.9, 0.99]
123
+
124
+ scheduler:
125
+ type: MultiStepLR
126
+ milestones: [400000]
127
+ gamma: 0.5
128
+
129
+ total_iter: 400000
130
+ warmup_iter: -1 # no warm up
131
+
132
+ # losses
133
+ pixel_opt:
134
+ type: L1Loss
135
+ loss_weight: 1.0
136
+ reduction: mean
137
+ # perceptual loss (content and style losses)
138
+ perceptual_opt:
139
+ type: PerceptualLoss
140
+ layer_weights:
141
+ # before relu
142
+ 'conv1_2': 0.1
143
+ 'conv2_2': 0.1
144
+ 'conv3_4': 1
145
+ 'conv4_4': 1
146
+ 'conv5_4': 1
147
+ vgg_type: vgg19
148
+ use_input_norm: true
149
+ perceptual_weight: !!float 1.0
150
+ style_weight: 0
151
+ range_norm: false
152
+ criterion: l1
153
+ # gan loss
154
+ gan_opt:
155
+ type: GANLoss
156
+ gan_type: vanilla
157
+ real_label_val: 1.0
158
+ fake_label_val: 0.0
159
+ loss_weight: !!float 1e-1
160
+
161
+ net_d_iters: 1
162
+ net_d_init_iters: 0
163
+
164
+ # Uncomment these for validation
165
+ # validation settings
166
+ # val:
167
+ # val_freq: !!float 5e3
168
+ # save_img: True
169
+
170
+ # metrics:
171
+ # psnr: # metric name
172
+ # type: calculate_psnr
173
+ # crop_border: 4
174
+ # test_y_channel: false
175
+
176
+ # logging settings
177
+ logger:
178
+ print_freq: 100
179
+ save_checkpoint_freq: !!float 5e3
180
+ use_tb_logger: true
181
+ wandb:
182
+ project: ~
183
+ resume_id: ~
184
+
185
+ # dist training settings
186
+ dist_params:
187
+ backend: nccl
188
+ port: 29500
options/finetune_realesrgan_x4plus_pairdata.yml ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: finetune_RealESRGANx4plus_400k_pairdata
3
+ model_type: RealESRGANModel
4
+ scale: 4
5
+ num_gpu: auto
6
+ manual_seed: 0
7
+
8
+ # USM the ground-truth
9
+ l1_gt_usm: True
10
+ percep_gt_usm: True
11
+ gan_gt_usm: False
12
+
13
+ high_order_degradation: False # do not use the high-order degradation generation process
14
+
15
+ # dataset and data loader settings
16
+ datasets:
17
+ train:
18
+ name: DIV2K
19
+ type: RealESRGANPairedDataset
20
+ dataroot_gt: datasets/DF2K
21
+ dataroot_lq: datasets/DF2K
22
+ meta_info: datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt
23
+ io_backend:
24
+ type: disk
25
+
26
+ gt_size: 256
27
+ use_hflip: True
28
+ use_rot: False
29
+
30
+ # data loader
31
+ use_shuffle: true
32
+ num_worker_per_gpu: 5
33
+ batch_size_per_gpu: 12
34
+ dataset_enlarge_ratio: 1
35
+ prefetch_mode: ~
36
+
37
+ # Uncomment these for validation
38
+ # val:
39
+ # name: validation
40
+ # type: PairedImageDataset
41
+ # dataroot_gt: path_to_gt
42
+ # dataroot_lq: path_to_lq
43
+ # io_backend:
44
+ # type: disk
45
+
46
+ # network structures
47
+ network_g:
48
+ type: RRDBNet
49
+ num_in_ch: 3
50
+ num_out_ch: 3
51
+ num_feat: 64
52
+ num_block: 23
53
+ num_grow_ch: 32
54
+
55
+ network_d:
56
+ type: UNetDiscriminatorSN
57
+ num_in_ch: 3
58
+ num_feat: 64
59
+ skip_connection: True
60
+
61
+ # path
62
+ path:
63
+ # use the pre-trained Real-ESRNet model
64
+ pretrain_network_g: experiments/pretrained_models/RealESRNet_x4plus.pth
65
+ param_key_g: params_ema
66
+ strict_load_g: true
67
+ pretrain_network_d: experiments/pretrained_models/RealESRGAN_x4plus_netD.pth
68
+ param_key_d: params
69
+ strict_load_d: true
70
+ resume_state: ~
71
+
72
+ # training settings
73
+ train:
74
+ ema_decay: 0.999
75
+ optim_g:
76
+ type: Adam
77
+ lr: !!float 1e-4
78
+ weight_decay: 0
79
+ betas: [0.9, 0.99]
80
+ optim_d:
81
+ type: Adam
82
+ lr: !!float 1e-4
83
+ weight_decay: 0
84
+ betas: [0.9, 0.99]
85
+
86
+ scheduler:
87
+ type: MultiStepLR
88
+ milestones: [400000]
89
+ gamma: 0.5
90
+
91
+ total_iter: 400000
92
+ warmup_iter: -1 # no warm up
93
+
94
+ # losses
95
+ pixel_opt:
96
+ type: L1Loss
97
+ loss_weight: 1.0
98
+ reduction: mean
99
+ # perceptual loss (content and style losses)
100
+ perceptual_opt:
101
+ type: PerceptualLoss
102
+ layer_weights:
103
+ # before relu
104
+ 'conv1_2': 0.1
105
+ 'conv2_2': 0.1
106
+ 'conv3_4': 1
107
+ 'conv4_4': 1
108
+ 'conv5_4': 1
109
+ vgg_type: vgg19
110
+ use_input_norm: true
111
+ perceptual_weight: !!float 1.0
112
+ style_weight: 0
113
+ range_norm: false
114
+ criterion: l1
115
+ # gan loss
116
+ gan_opt:
117
+ type: GANLoss
118
+ gan_type: vanilla
119
+ real_label_val: 1.0
120
+ fake_label_val: 0.0
121
+ loss_weight: !!float 1e-1
122
+
123
+ net_d_iters: 1
124
+ net_d_init_iters: 0
125
+
126
+ # Uncomment these for validation
127
+ # validation settings
128
+ # val:
129
+ # val_freq: !!float 5e3
130
+ # save_img: True
131
+
132
+ # metrics:
133
+ # psnr: # metric name
134
+ # type: calculate_psnr
135
+ # crop_border: 4
136
+ # test_y_channel: false
137
+
138
+ # logging settings
139
+ logger:
140
+ print_freq: 100
141
+ save_checkpoint_freq: !!float 5e3
142
+ use_tb_logger: true
143
+ wandb:
144
+ project: ~
145
+ resume_id: ~
146
+
147
+ # dist training settings
148
+ dist_params:
149
+ backend: nccl
150
+ port: 29500
options/setup.cfg ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [flake8]
2
+ ignore =
3
+ # line break before binary operator (W503)
4
+ W503,
5
+ # line break after binary operator (W504)
6
+ W504,
7
+ max-line-length=120
8
+
9
+ [yapf]
10
+ based_on_style = pep8
11
+ column_limit = 120
12
+ blank_line_before_nested_class_or_def = true
13
+ split_before_expression_after_opening_paren = true
14
+
15
+ [isort]
16
+ line_length = 120
17
+ multi_line_output = 0
18
+ known_standard_library = pkg_resources,setuptools
19
+ known_first_party = realesrgan
20
+ known_third_party = PIL,basicsr,cv2,numpy,pytest,torch,torchvision,tqdm,yaml
21
+ no_lines_before = STDLIB,LOCALFOLDER
22
+ default_section = THIRDPARTY
23
+
24
+ [codespell]
25
+ skip = .git,./docs/build
26
+ count =
27
+ quiet-level = 3
28
+
29
+ [aliases]
30
+ test=pytest
31
+
32
+ [tool:pytest]
33
+ addopts=tests/
options/train_realesrgan_x2plus.yml ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRGANx2plus_400k_B12G4
3
+ model_type: RealESRGANModel
4
+ scale: 2
5
+ num_gpu: auto # auto: can infer from your visible devices automatically. official: 4 GPUs
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRGANModel ----------------- #
9
+ # USM the ground-truth
10
+ l1_gt_usm: True
11
+ percep_gt_usm: True
12
+ gan_gt_usm: False
13
+
14
+ # the first degradation process
15
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
16
+ resize_range: [0.15, 1.5]
17
+ gaussian_noise_prob: 0.5
18
+ noise_range: [1, 30]
19
+ poisson_scale_range: [0.05, 3]
20
+ gray_noise_prob: 0.4
21
+ jpeg_range: [30, 95]
22
+
23
+ # the second degradation process
24
+ second_blur_prob: 0.8
25
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
26
+ resize_range2: [0.3, 1.2]
27
+ gaussian_noise_prob2: 0.5
28
+ noise_range2: [1, 25]
29
+ poisson_scale_range2: [0.05, 2.5]
30
+ gray_noise_prob2: 0.4
31
+ jpeg_range2: [30, 95]
32
+
33
+ gt_size: 256
34
+ queue_size: 180
35
+
36
+ # dataset and data loader settings
37
+ datasets:
38
+ train:
39
+ name: DF2K+OST
40
+ type: RealESRGANDataset
41
+ dataroot_gt: datasets/DF2K
42
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
43
+ io_backend:
44
+ type: disk
45
+
46
+ blur_kernel_size: 21
47
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
48
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
49
+ sinc_prob: 0.1
50
+ blur_sigma: [0.2, 3]
51
+ betag_range: [0.5, 4]
52
+ betap_range: [1, 2]
53
+
54
+ blur_kernel_size2: 21
55
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
56
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
57
+ sinc_prob2: 0.1
58
+ blur_sigma2: [0.2, 1.5]
59
+ betag_range2: [0.5, 4]
60
+ betap_range2: [1, 2]
61
+
62
+ final_sinc_prob: 0.8
63
+
64
+ gt_size: 256
65
+ use_hflip: True
66
+ use_rot: False
67
+
68
+ # data loader
69
+ use_shuffle: true
70
+ num_worker_per_gpu: 5
71
+ batch_size_per_gpu: 12
72
+ dataset_enlarge_ratio: 1
73
+ prefetch_mode: ~
74
+
75
+ # Uncomment these for validation
76
+ # val:
77
+ # name: validation
78
+ # type: PairedImageDataset
79
+ # dataroot_gt: path_to_gt
80
+ # dataroot_lq: path_to_lq
81
+ # io_backend:
82
+ # type: disk
83
+
84
+ # network structures
85
+ network_g:
86
+ type: RRDBNet
87
+ num_in_ch: 3
88
+ num_out_ch: 3
89
+ num_feat: 64
90
+ num_block: 23
91
+ num_grow_ch: 32
92
+ scale: 2
93
+
94
+ network_d:
95
+ type: UNetDiscriminatorSN
96
+ num_in_ch: 3
97
+ num_feat: 64
98
+ skip_connection: True
99
+
100
+ # path
101
+ path:
102
+ # use the pre-trained Real-ESRNet model
103
+ pretrain_network_g: experiments/pretrained_models/RealESRNet_x2plus.pth
104
+ param_key_g: params_ema
105
+ strict_load_g: true
106
+ resume_state: ~
107
+
108
+ # training settings
109
+ train:
110
+ ema_decay: 0.999
111
+ optim_g:
112
+ type: Adam
113
+ lr: !!float 1e-4
114
+ weight_decay: 0
115
+ betas: [0.9, 0.99]
116
+ optim_d:
117
+ type: Adam
118
+ lr: !!float 1e-4
119
+ weight_decay: 0
120
+ betas: [0.9, 0.99]
121
+
122
+ scheduler:
123
+ type: MultiStepLR
124
+ milestones: [400000]
125
+ gamma: 0.5
126
+
127
+ total_iter: 400000
128
+ warmup_iter: -1 # no warm up
129
+
130
+ # losses
131
+ pixel_opt:
132
+ type: L1Loss
133
+ loss_weight: 1.0
134
+ reduction: mean
135
+ # perceptual loss (content and style losses)
136
+ perceptual_opt:
137
+ type: PerceptualLoss
138
+ layer_weights:
139
+ # before relu
140
+ 'conv1_2': 0.1
141
+ 'conv2_2': 0.1
142
+ 'conv3_4': 1
143
+ 'conv4_4': 1
144
+ 'conv5_4': 1
145
+ vgg_type: vgg19
146
+ use_input_norm: true
147
+ perceptual_weight: !!float 1.0
148
+ style_weight: 0
149
+ range_norm: false
150
+ criterion: l1
151
+ # gan loss
152
+ gan_opt:
153
+ type: GANLoss
154
+ gan_type: vanilla
155
+ real_label_val: 1.0
156
+ fake_label_val: 0.0
157
+ loss_weight: !!float 1e-1
158
+
159
+ net_d_iters: 1
160
+ net_d_init_iters: 0
161
+
162
+ # Uncomment these for validation
163
+ # validation settings
164
+ # val:
165
+ # val_freq: !!float 5e3
166
+ # save_img: True
167
+
168
+ # metrics:
169
+ # psnr: # metric name
170
+ # type: calculate_psnr
171
+ # crop_border: 4
172
+ # test_y_channel: false
173
+
174
+ # logging settings
175
+ logger:
176
+ print_freq: 100
177
+ save_checkpoint_freq: !!float 5e3
178
+ use_tb_logger: true
179
+ wandb:
180
+ project: ~
181
+ resume_id: ~
182
+
183
+ # dist training settings
184
+ dist_params:
185
+ backend: nccl
186
+ port: 29500
options/train_realesrgan_x4plus.yml ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRGANx4plus_400k_B12G4
3
+ model_type: RealESRGANModel
4
+ scale: 4
5
+ num_gpu: auto # auto: can infer from your visible devices automatically. official: 4 GPUs
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRGANModel ----------------- #
9
+ # USM the ground-truth
10
+ l1_gt_usm: True
11
+ percep_gt_usm: True
12
+ gan_gt_usm: False
13
+
14
+ # the first degradation process
15
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
16
+ resize_range: [0.15, 1.5]
17
+ gaussian_noise_prob: 0.5
18
+ noise_range: [1, 30]
19
+ poisson_scale_range: [0.05, 3]
20
+ gray_noise_prob: 0.4
21
+ jpeg_range: [30, 95]
22
+
23
+ # the second degradation process
24
+ second_blur_prob: 0.8
25
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
26
+ resize_range2: [0.3, 1.2]
27
+ gaussian_noise_prob2: 0.5
28
+ noise_range2: [1, 25]
29
+ poisson_scale_range2: [0.05, 2.5]
30
+ gray_noise_prob2: 0.4
31
+ jpeg_range2: [30, 95]
32
+
33
+ gt_size: 256
34
+ queue_size: 180
35
+
36
+ # dataset and data loader settings
37
+ datasets:
38
+ train:
39
+ name: DF2K+OST
40
+ type: RealESRGANDataset
41
+ dataroot_gt: datasets/DF2K
42
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
43
+ io_backend:
44
+ type: disk
45
+
46
+ blur_kernel_size: 21
47
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
48
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
49
+ sinc_prob: 0.1
50
+ blur_sigma: [0.2, 3]
51
+ betag_range: [0.5, 4]
52
+ betap_range: [1, 2]
53
+
54
+ blur_kernel_size2: 21
55
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
56
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
57
+ sinc_prob2: 0.1
58
+ blur_sigma2: [0.2, 1.5]
59
+ betag_range2: [0.5, 4]
60
+ betap_range2: [1, 2]
61
+
62
+ final_sinc_prob: 0.8
63
+
64
+ gt_size: 256
65
+ use_hflip: True
66
+ use_rot: False
67
+
68
+ # data loader
69
+ use_shuffle: true
70
+ num_worker_per_gpu: 5
71
+ batch_size_per_gpu: 12
72
+ dataset_enlarge_ratio: 1
73
+ prefetch_mode: ~
74
+
75
+ # Uncomment these for validation
76
+ # val:
77
+ # name: validation
78
+ # type: PairedImageDataset
79
+ # dataroot_gt: path_to_gt
80
+ # dataroot_lq: path_to_lq
81
+ # io_backend:
82
+ # type: disk
83
+
84
+ # network structures
85
+ network_g:
86
+ type: RRDBNet
87
+ num_in_ch: 3
88
+ num_out_ch: 3
89
+ num_feat: 64
90
+ num_block: 23
91
+ num_grow_ch: 32
92
+
93
+ network_d:
94
+ type: UNetDiscriminatorSN
95
+ num_in_ch: 3
96
+ num_feat: 64
97
+ skip_connection: True
98
+
99
+ # path
100
+ path:
101
+ # use the pre-trained Real-ESRNet model
102
+ pretrain_network_g: experiments/pretrained_models/RealESRNet_x4plus.pth
103
+ param_key_g: params_ema
104
+ strict_load_g: true
105
+ resume_state: ~
106
+
107
+ # training settings
108
+ train:
109
+ ema_decay: 0.999
110
+ optim_g:
111
+ type: Adam
112
+ lr: !!float 1e-4
113
+ weight_decay: 0
114
+ betas: [0.9, 0.99]
115
+ optim_d:
116
+ type: Adam
117
+ lr: !!float 1e-4
118
+ weight_decay: 0
119
+ betas: [0.9, 0.99]
120
+
121
+ scheduler:
122
+ type: MultiStepLR
123
+ milestones: [400000]
124
+ gamma: 0.5
125
+
126
+ total_iter: 400000
127
+ warmup_iter: -1 # no warm up
128
+
129
+ # losses
130
+ pixel_opt:
131
+ type: L1Loss
132
+ loss_weight: 1.0
133
+ reduction: mean
134
+ # perceptual loss (content and style losses)
135
+ perceptual_opt:
136
+ type: PerceptualLoss
137
+ layer_weights:
138
+ # before relu
139
+ 'conv1_2': 0.1
140
+ 'conv2_2': 0.1
141
+ 'conv3_4': 1
142
+ 'conv4_4': 1
143
+ 'conv5_4': 1
144
+ vgg_type: vgg19
145
+ use_input_norm: true
146
+ perceptual_weight: !!float 1.0
147
+ style_weight: 0
148
+ range_norm: false
149
+ criterion: l1
150
+ # gan loss
151
+ gan_opt:
152
+ type: GANLoss
153
+ gan_type: vanilla
154
+ real_label_val: 1.0
155
+ fake_label_val: 0.0
156
+ loss_weight: !!float 1e-1
157
+
158
+ net_d_iters: 1
159
+ net_d_init_iters: 0
160
+
161
+ # Uncomment these for validation
162
+ # validation settings
163
+ # val:
164
+ # val_freq: !!float 5e3
165
+ # save_img: True
166
+
167
+ # metrics:
168
+ # psnr: # metric name
169
+ # type: calculate_psnr
170
+ # crop_border: 4
171
+ # test_y_channel: false
172
+
173
+ # logging settings
174
+ logger:
175
+ print_freq: 100
176
+ save_checkpoint_freq: !!float 5e3
177
+ use_tb_logger: true
178
+ wandb:
179
+ project: ~
180
+ resume_id: ~
181
+
182
+ # dist training settings
183
+ dist_params:
184
+ backend: nccl
185
+ port: 29500
options/train_realesrnet_x2plus.yml ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRNetx2plus_1000k_B12G4
3
+ model_type: RealESRNetModel
4
+ scale: 2
5
+ num_gpu: auto # auto: can infer from your visible devices automatically. official: 4 GPUs
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRNetModel ----------------- #
9
+ gt_usm: True # USM the ground-truth
10
+
11
+ # the first degradation process
12
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
13
+ resize_range: [0.15, 1.5]
14
+ gaussian_noise_prob: 0.5
15
+ noise_range: [1, 30]
16
+ poisson_scale_range: [0.05, 3]
17
+ gray_noise_prob: 0.4
18
+ jpeg_range: [30, 95]
19
+
20
+ # the second degradation process
21
+ second_blur_prob: 0.8
22
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
23
+ resize_range2: [0.3, 1.2]
24
+ gaussian_noise_prob2: 0.5
25
+ noise_range2: [1, 25]
26
+ poisson_scale_range2: [0.05, 2.5]
27
+ gray_noise_prob2: 0.4
28
+ jpeg_range2: [30, 95]
29
+
30
+ gt_size: 256
31
+ queue_size: 180
32
+
33
+ # dataset and data loader settings
34
+ datasets:
35
+ train:
36
+ name: DF2K+OST
37
+ type: RealESRGANDataset
38
+ dataroot_gt: datasets/DF2K
39
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
40
+ io_backend:
41
+ type: disk
42
+
43
+ blur_kernel_size: 21
44
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
45
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
46
+ sinc_prob: 0.1
47
+ blur_sigma: [0.2, 3]
48
+ betag_range: [0.5, 4]
49
+ betap_range: [1, 2]
50
+
51
+ blur_kernel_size2: 21
52
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
53
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
54
+ sinc_prob2: 0.1
55
+ blur_sigma2: [0.2, 1.5]
56
+ betag_range2: [0.5, 4]
57
+ betap_range2: [1, 2]
58
+
59
+ final_sinc_prob: 0.8
60
+
61
+ gt_size: 256
62
+ use_hflip: True
63
+ use_rot: False
64
+
65
+ # data loader
66
+ use_shuffle: true
67
+ num_worker_per_gpu: 5
68
+ batch_size_per_gpu: 12
69
+ dataset_enlarge_ratio: 1
70
+ prefetch_mode: ~
71
+
72
+ # Uncomment these for validation
73
+ # val:
74
+ # name: validation
75
+ # type: PairedImageDataset
76
+ # dataroot_gt: path_to_gt
77
+ # dataroot_lq: path_to_lq
78
+ # io_backend:
79
+ # type: disk
80
+
81
+ # network structures
82
+ network_g:
83
+ type: RRDBNet
84
+ num_in_ch: 3
85
+ num_out_ch: 3
86
+ num_feat: 64
87
+ num_block: 23
88
+ num_grow_ch: 32
89
+ scale: 2
90
+
91
+ # path
92
+ path:
93
+ pretrain_network_g: experiments/pretrained_models/RealESRGAN_x4plus.pth
94
+ param_key_g: params_ema
95
+ strict_load_g: False
96
+ resume_state: ~
97
+
98
+ # training settings
99
+ train:
100
+ ema_decay: 0.999
101
+ optim_g:
102
+ type: Adam
103
+ lr: !!float 2e-4
104
+ weight_decay: 0
105
+ betas: [0.9, 0.99]
106
+
107
+ scheduler:
108
+ type: MultiStepLR
109
+ milestones: [1000000]
110
+ gamma: 0.5
111
+
112
+ total_iter: 1000000
113
+ warmup_iter: -1 # no warm up
114
+
115
+ # losses
116
+ pixel_opt:
117
+ type: L1Loss
118
+ loss_weight: 1.0
119
+ reduction: mean
120
+
121
+ # Uncomment these for validation
122
+ # validation settings
123
+ # val:
124
+ # val_freq: !!float 5e3
125
+ # save_img: True
126
+
127
+ # metrics:
128
+ # psnr: # metric name
129
+ # type: calculate_psnr
130
+ # crop_border: 4
131
+ # test_y_channel: false
132
+
133
+ # logging settings
134
+ logger:
135
+ print_freq: 100
136
+ save_checkpoint_freq: !!float 5e3
137
+ use_tb_logger: true
138
+ wandb:
139
+ project: ~
140
+ resume_id: ~
141
+
142
+ # dist training settings
143
+ dist_params:
144
+ backend: nccl
145
+ port: 29500
options/train_realesrnet_x4plus.yml ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRNetx4plus_1000k_B12G4
3
+ model_type: RealESRNetModel
4
+ scale: 4
5
+ num_gpu: auto # auto: can infer from your visible devices automatically. official: 4 GPUs
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRNetModel ----------------- #
9
+ gt_usm: True # USM the ground-truth
10
+
11
+ # the first degradation process
12
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
13
+ resize_range: [0.15, 1.5]
14
+ gaussian_noise_prob: 0.5
15
+ noise_range: [1, 30]
16
+ poisson_scale_range: [0.05, 3]
17
+ gray_noise_prob: 0.4
18
+ jpeg_range: [30, 95]
19
+
20
+ # the second degradation process
21
+ second_blur_prob: 0.8
22
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
23
+ resize_range2: [0.3, 1.2]
24
+ gaussian_noise_prob2: 0.5
25
+ noise_range2: [1, 25]
26
+ poisson_scale_range2: [0.05, 2.5]
27
+ gray_noise_prob2: 0.4
28
+ jpeg_range2: [30, 95]
29
+
30
+ gt_size: 256
31
+ queue_size: 180
32
+
33
+ # dataset and data loader settings
34
+ datasets:
35
+ train:
36
+ name: DF2K+OST
37
+ type: RealESRGANDataset
38
+ dataroot_gt: datasets/DF2K
39
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
40
+ io_backend:
41
+ type: disk
42
+
43
+ blur_kernel_size: 21
44
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
45
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
46
+ sinc_prob: 0.1
47
+ blur_sigma: [0.2, 3]
48
+ betag_range: [0.5, 4]
49
+ betap_range: [1, 2]
50
+
51
+ blur_kernel_size2: 21
52
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
53
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
54
+ sinc_prob2: 0.1
55
+ blur_sigma2: [0.2, 1.5]
56
+ betag_range2: [0.5, 4]
57
+ betap_range2: [1, 2]
58
+
59
+ final_sinc_prob: 0.8
60
+
61
+ gt_size: 256
62
+ use_hflip: True
63
+ use_rot: False
64
+
65
+ # data loader
66
+ use_shuffle: true
67
+ num_worker_per_gpu: 5
68
+ batch_size_per_gpu: 12
69
+ dataset_enlarge_ratio: 1
70
+ prefetch_mode: ~
71
+
72
+ # Uncomment these for validation
73
+ # val:
74
+ # name: validation
75
+ # type: PairedImageDataset
76
+ # dataroot_gt: path_to_gt
77
+ # dataroot_lq: path_to_lq
78
+ # io_backend:
79
+ # type: disk
80
+
81
+ # network structures
82
+ network_g:
83
+ type: RRDBNet
84
+ num_in_ch: 3
85
+ num_out_ch: 3
86
+ num_feat: 64
87
+ num_block: 23
88
+ num_grow_ch: 32
89
+
90
+ # path
91
+ path:
92
+ pretrain_network_g: experiments/pretrained_models/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth
93
+ param_key_g: params_ema
94
+ strict_load_g: true
95
+ resume_state: ~
96
+
97
+ # training settings
98
+ train:
99
+ ema_decay: 0.999
100
+ optim_g:
101
+ type: Adam
102
+ lr: !!float 2e-4
103
+ weight_decay: 0
104
+ betas: [0.9, 0.99]
105
+
106
+ scheduler:
107
+ type: MultiStepLR
108
+ milestones: [1000000]
109
+ gamma: 0.5
110
+
111
+ total_iter: 1000000
112
+ warmup_iter: -1 # no warm up
113
+
114
+ # losses
115
+ pixel_opt:
116
+ type: L1Loss
117
+ loss_weight: 1.0
118
+ reduction: mean
119
+
120
+ # Uncomment these for validation
121
+ # validation settings
122
+ # val:
123
+ # val_freq: !!float 5e3
124
+ # save_img: True
125
+
126
+ # metrics:
127
+ # psnr: # metric name
128
+ # type: calculate_psnr
129
+ # crop_border: 4
130
+ # test_y_channel: false
131
+
132
+ # logging settings
133
+ logger:
134
+ print_freq: 100
135
+ save_checkpoint_freq: !!float 5e3
136
+ use_tb_logger: true
137
+ wandb:
138
+ project: ~
139
+ resume_id: ~
140
+
141
+ # dist training settings
142
+ dist_params:
143
+ backend: nccl
144
+ port: 29500
packages.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ffmpeg
2
+ libsm6
3
+ libxext6
realesrgan/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ from .archs import *
3
+ from .data import *
4
+ from .models import *
5
+ from .utils import *
6
+ #from .version import *
realesrgan/archs/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import arch modules for registry
6
+ # scan all the files that end with '_arch.py' under the archs folder
7
+ arch_folder = osp.dirname(osp.abspath(__file__))
8
+ arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')]
9
+ # import all the arch modules
10
+ _arch_modules = [importlib.import_module(f'realesrgan.archs.{file_name}') for file_name in arch_filenames]
realesrgan/archs/discriminator_arch.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from basicsr.utils.registry import ARCH_REGISTRY
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+ from torch.nn.utils import spectral_norm
5
+
6
+
7
+ @ARCH_REGISTRY.register()
8
+ class UNetDiscriminatorSN(nn.Module):
9
+ """Defines a U-Net discriminator with spectral normalization (SN)
10
+
11
+ It is used in Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
12
+
13
+ Arg:
14
+ num_in_ch (int): Channel number of inputs. Default: 3.
15
+ num_feat (int): Channel number of base intermediate features. Default: 64.
16
+ skip_connection (bool): Whether to use skip connections between U-Net. Default: True.
17
+ """
18
+
19
+ def __init__(self, num_in_ch, num_feat=64, skip_connection=True):
20
+ super(UNetDiscriminatorSN, self).__init__()
21
+ self.skip_connection = skip_connection
22
+ norm = spectral_norm
23
+ # the first convolution
24
+ self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1)
25
+ # downsample
26
+ self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False))
27
+ self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False))
28
+ self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False))
29
+ # upsample
30
+ self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False))
31
+ self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False))
32
+ self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False))
33
+ # extra convolutions
34
+ self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
35
+ self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
36
+ self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1)
37
+
38
+ def forward(self, x):
39
+ # downsample
40
+ x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True)
41
+ x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True)
42
+ x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True)
43
+ x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True)
44
+
45
+ # upsample
46
+ x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False)
47
+ x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True)
48
+
49
+ if self.skip_connection:
50
+ x4 = x4 + x2
51
+ x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False)
52
+ x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True)
53
+
54
+ if self.skip_connection:
55
+ x5 = x5 + x1
56
+ x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False)
57
+ x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True)
58
+
59
+ if self.skip_connection:
60
+ x6 = x6 + x0
61
+
62
+ # extra convolutions
63
+ out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True)
64
+ out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True)
65
+ out = self.conv9(out)
66
+
67
+ return out
realesrgan/archs/srvgg_arch.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from basicsr.utils.registry import ARCH_REGISTRY
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+
5
+
6
+ @ARCH_REGISTRY.register()
7
+ class SRVGGNetCompact(nn.Module):
8
+ """A compact VGG-style network structure for super-resolution.
9
+
10
+ It is a compact network structure, which performs upsampling in the last layer and no convolution is
11
+ conducted on the HR feature space.
12
+
13
+ Args:
14
+ num_in_ch (int): Channel number of inputs. Default: 3.
15
+ num_out_ch (int): Channel number of outputs. Default: 3.
16
+ num_feat (int): Channel number of intermediate features. Default: 64.
17
+ num_conv (int): Number of convolution layers in the body network. Default: 16.
18
+ upscale (int): Upsampling factor. Default: 4.
19
+ act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu.
20
+ """
21
+
22
+ def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
23
+ super(SRVGGNetCompact, self).__init__()
24
+ self.num_in_ch = num_in_ch
25
+ self.num_out_ch = num_out_ch
26
+ self.num_feat = num_feat
27
+ self.num_conv = num_conv
28
+ self.upscale = upscale
29
+ self.act_type = act_type
30
+
31
+ self.body = nn.ModuleList()
32
+ # the first conv
33
+ self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
34
+ # the first activation
35
+ if act_type == 'relu':
36
+ activation = nn.ReLU(inplace=True)
37
+ elif act_type == 'prelu':
38
+ activation = nn.PReLU(num_parameters=num_feat)
39
+ elif act_type == 'leakyrelu':
40
+ activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
41
+ self.body.append(activation)
42
+
43
+ # the body structure
44
+ for _ in range(num_conv):
45
+ self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
46
+ # activation
47
+ if act_type == 'relu':
48
+ activation = nn.ReLU(inplace=True)
49
+ elif act_type == 'prelu':
50
+ activation = nn.PReLU(num_parameters=num_feat)
51
+ elif act_type == 'leakyrelu':
52
+ activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
53
+ self.body.append(activation)
54
+
55
+ # the last conv
56
+ self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
57
+ # upsample
58
+ self.upsampler = nn.PixelShuffle(upscale)
59
+
60
+ def forward(self, x):
61
+ out = x
62
+ for i in range(0, len(self.body)):
63
+ out = self.body[i](out)
64
+
65
+ out = self.upsampler(out)
66
+ # add the nearest upsampled image, so that the network learns the residual
67
+ base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
68
+ out += base
69
+ return out
realesrgan/data/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import dataset modules for registry
6
+ # scan all the files that end with '_dataset.py' under the data folder
7
+ data_folder = osp.dirname(osp.abspath(__file__))
8
+ dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
9
+ # import all the dataset modules
10
+ _dataset_modules = [importlib.import_module(f'realesrgan.data.{file_name}') for file_name in dataset_filenames]
realesrgan/data/realesrgan_dataset.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import os
5
+ import os.path as osp
6
+ import random
7
+ import time
8
+ import torch
9
+ from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
10
+ from basicsr.data.transforms import augment
11
+ from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
12
+ from basicsr.utils.registry import DATASET_REGISTRY
13
+ from torch.utils import data as data
14
+
15
+
16
+ @DATASET_REGISTRY.register()
17
+ class RealESRGANDataset(data.Dataset):
18
+ """Dataset used for Real-ESRGAN model:
19
+ Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
20
+
21
+ It loads gt (Ground-Truth) images, and augments them.
22
+ It also generates blur kernels and sinc kernels for generating low-quality images.
23
+ Note that the low-quality images are processed in tensors on GPUS for faster processing.
24
+
25
+ Args:
26
+ opt (dict): Config for train datasets. It contains the following keys:
27
+ dataroot_gt (str): Data root path for gt.
28
+ meta_info (str): Path for meta information file.
29
+ io_backend (dict): IO backend type and other kwarg.
30
+ use_hflip (bool): Use horizontal flips.
31
+ use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
32
+ Please see more options in the codes.
33
+ """
34
+
35
+ def __init__(self, opt):
36
+ super(RealESRGANDataset, self).__init__()
37
+ self.opt = opt
38
+ self.file_client = None
39
+ self.io_backend_opt = opt['io_backend']
40
+ self.gt_folder = opt['dataroot_gt']
41
+
42
+ # file client (lmdb io backend)
43
+ if self.io_backend_opt['type'] == 'lmdb':
44
+ self.io_backend_opt['db_paths'] = [self.gt_folder]
45
+ self.io_backend_opt['client_keys'] = ['gt']
46
+ if not self.gt_folder.endswith('.lmdb'):
47
+ raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
48
+ with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
49
+ self.paths = [line.split('.')[0] for line in fin]
50
+ else:
51
+ # disk backend with meta_info
52
+ # Each line in the meta_info describes the relative path to an image
53
+ with open(self.opt['meta_info']) as fin:
54
+ paths = [line.strip().split(' ')[0] for line in fin]
55
+ self.paths = [os.path.join(self.gt_folder, v) for v in paths]
56
+
57
+ # blur settings for the first degradation
58
+ self.blur_kernel_size = opt['blur_kernel_size']
59
+ self.kernel_list = opt['kernel_list']
60
+ self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability
61
+ self.blur_sigma = opt['blur_sigma']
62
+ self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels
63
+ self.betap_range = opt['betap_range'] # betap used in plateau blur kernels
64
+ self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters
65
+
66
+ # blur settings for the second degradation
67
+ self.blur_kernel_size2 = opt['blur_kernel_size2']
68
+ self.kernel_list2 = opt['kernel_list2']
69
+ self.kernel_prob2 = opt['kernel_prob2']
70
+ self.blur_sigma2 = opt['blur_sigma2']
71
+ self.betag_range2 = opt['betag_range2']
72
+ self.betap_range2 = opt['betap_range2']
73
+ self.sinc_prob2 = opt['sinc_prob2']
74
+
75
+ # a final sinc filter
76
+ self.final_sinc_prob = opt['final_sinc_prob']
77
+
78
+ self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21
79
+ # TODO: kernel range is now hard-coded, should be in the configure file
80
+ self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect
81
+ self.pulse_tensor[10, 10] = 1
82
+
83
+ def __getitem__(self, index):
84
+ if self.file_client is None:
85
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
86
+
87
+ # -------------------------------- Load gt images -------------------------------- #
88
+ # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
89
+ gt_path = self.paths[index]
90
+ # avoid errors caused by high latency in reading files
91
+ retry = 3
92
+ while retry > 0:
93
+ try:
94
+ img_bytes = self.file_client.get(gt_path, 'gt')
95
+ except (IOError, OSError) as e:
96
+ logger = get_root_logger()
97
+ logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}')
98
+ # change another file to read
99
+ index = random.randint(0, self.__len__())
100
+ gt_path = self.paths[index]
101
+ time.sleep(1) # sleep 1s for occasional server congestion
102
+ else:
103
+ break
104
+ finally:
105
+ retry -= 1
106
+ img_gt = imfrombytes(img_bytes, float32=True)
107
+
108
+ # -------------------- Do augmentation for training: flip, rotation -------------------- #
109
+ img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot'])
110
+
111
+ # crop or pad to 400
112
+ # TODO: 400 is hard-coded. You may change it accordingly
113
+ h, w = img_gt.shape[0:2]
114
+ crop_pad_size = 400
115
+ # pad
116
+ if h < crop_pad_size or w < crop_pad_size:
117
+ pad_h = max(0, crop_pad_size - h)
118
+ pad_w = max(0, crop_pad_size - w)
119
+ img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
120
+ # crop
121
+ if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size:
122
+ h, w = img_gt.shape[0:2]
123
+ # randomly choose top and left coordinates
124
+ top = random.randint(0, h - crop_pad_size)
125
+ left = random.randint(0, w - crop_pad_size)
126
+ img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...]
127
+
128
+ # ------------------------ Generate kernels (used in the first degradation) ------------------------ #
129
+ kernel_size = random.choice(self.kernel_range)
130
+ if np.random.uniform() < self.opt['sinc_prob']:
131
+ # this sinc filter setting is for kernels ranging from [7, 21]
132
+ if kernel_size < 13:
133
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
134
+ else:
135
+ omega_c = np.random.uniform(np.pi / 5, np.pi)
136
+ kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
137
+ else:
138
+ kernel = random_mixed_kernels(
139
+ self.kernel_list,
140
+ self.kernel_prob,
141
+ kernel_size,
142
+ self.blur_sigma,
143
+ self.blur_sigma, [-math.pi, math.pi],
144
+ self.betag_range,
145
+ self.betap_range,
146
+ noise_range=None)
147
+ # pad kernel
148
+ pad_size = (21 - kernel_size) // 2
149
+ kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
150
+
151
+ # ------------------------ Generate kernels (used in the second degradation) ------------------------ #
152
+ kernel_size = random.choice(self.kernel_range)
153
+ if np.random.uniform() < self.opt['sinc_prob2']:
154
+ if kernel_size < 13:
155
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
156
+ else:
157
+ omega_c = np.random.uniform(np.pi / 5, np.pi)
158
+ kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
159
+ else:
160
+ kernel2 = random_mixed_kernels(
161
+ self.kernel_list2,
162
+ self.kernel_prob2,
163
+ kernel_size,
164
+ self.blur_sigma2,
165
+ self.blur_sigma2, [-math.pi, math.pi],
166
+ self.betag_range2,
167
+ self.betap_range2,
168
+ noise_range=None)
169
+
170
+ # pad kernel
171
+ pad_size = (21 - kernel_size) // 2
172
+ kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
173
+
174
+ # ------------------------------------- the final sinc kernel ------------------------------------- #
175
+ if np.random.uniform() < self.opt['final_sinc_prob']:
176
+ kernel_size = random.choice(self.kernel_range)
177
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
178
+ sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
179
+ sinc_kernel = torch.FloatTensor(sinc_kernel)
180
+ else:
181
+ sinc_kernel = self.pulse_tensor
182
+
183
+ # BGR to RGB, HWC to CHW, numpy to tensor
184
+ img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
185
+ kernel = torch.FloatTensor(kernel)
186
+ kernel2 = torch.FloatTensor(kernel2)
187
+
188
+ return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path}
189
+ return return_d
190
+
191
+ def __len__(self):
192
+ return len(self.paths)
realesrgan/data/realesrgan_paired_dataset.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from basicsr.data.data_util import paired_paths_from_folder, paired_paths_from_lmdb
3
+ from basicsr.data.transforms import augment, paired_random_crop
4
+ from basicsr.utils import FileClient, imfrombytes, img2tensor
5
+ from basicsr.utils.registry import DATASET_REGISTRY
6
+ from torch.utils import data as data
7
+ from torchvision.transforms.functional import normalize
8
+
9
+
10
+ @DATASET_REGISTRY.register()
11
+ class RealESRGANPairedDataset(data.Dataset):
12
+ """Paired image dataset for image restoration.
13
+
14
+ Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and GT image pairs.
15
+
16
+ There are three modes:
17
+ 1. 'lmdb': Use lmdb files.
18
+ If opt['io_backend'] == lmdb.
19
+ 2. 'meta_info': Use meta information file to generate paths.
20
+ If opt['io_backend'] != lmdb and opt['meta_info'] is not None.
21
+ 3. 'folder': Scan folders to generate paths.
22
+ The rest.
23
+
24
+ Args:
25
+ opt (dict): Config for train datasets. It contains the following keys:
26
+ dataroot_gt (str): Data root path for gt.
27
+ dataroot_lq (str): Data root path for lq.
28
+ meta_info (str): Path for meta information file.
29
+ io_backend (dict): IO backend type and other kwarg.
30
+ filename_tmpl (str): Template for each filename. Note that the template excludes the file extension.
31
+ Default: '{}'.
32
+ gt_size (int): Cropped patched size for gt patches.
33
+ use_hflip (bool): Use horizontal flips.
34
+ use_rot (bool): Use rotation (use vertical flip and transposing h
35
+ and w for implementation).
36
+
37
+ scale (bool): Scale, which will be added automatically.
38
+ phase (str): 'train' or 'val'.
39
+ """
40
+
41
+ def __init__(self, opt):
42
+ super(RealESRGANPairedDataset, self).__init__()
43
+ self.opt = opt
44
+ self.file_client = None
45
+ self.io_backend_opt = opt['io_backend']
46
+ # mean and std for normalizing the input images
47
+ self.mean = opt['mean'] if 'mean' in opt else None
48
+ self.std = opt['std'] if 'std' in opt else None
49
+
50
+ self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
51
+ self.filename_tmpl = opt['filename_tmpl'] if 'filename_tmpl' in opt else '{}'
52
+
53
+ # file client (lmdb io backend)
54
+ if self.io_backend_opt['type'] == 'lmdb':
55
+ self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder]
56
+ self.io_backend_opt['client_keys'] = ['lq', 'gt']
57
+ self.paths = paired_paths_from_lmdb([self.lq_folder, self.gt_folder], ['lq', 'gt'])
58
+ elif 'meta_info' in self.opt and self.opt['meta_info'] is not None:
59
+ # disk backend with meta_info
60
+ # Each line in the meta_info describes the relative path to an image
61
+ with open(self.opt['meta_info']) as fin:
62
+ paths = [line.strip() for line in fin]
63
+ self.paths = []
64
+ for path in paths:
65
+ gt_path, lq_path = path.split(', ')
66
+ gt_path = os.path.join(self.gt_folder, gt_path)
67
+ lq_path = os.path.join(self.lq_folder, lq_path)
68
+ self.paths.append(dict([('gt_path', gt_path), ('lq_path', lq_path)]))
69
+ else:
70
+ # disk backend
71
+ # it will scan the whole folder to get meta info
72
+ # it will be time-consuming for folders with too many files. It is recommended using an extra meta txt file
73
+ self.paths = paired_paths_from_folder([self.lq_folder, self.gt_folder], ['lq', 'gt'], self.filename_tmpl)
74
+
75
+ def __getitem__(self, index):
76
+ if self.file_client is None:
77
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
78
+
79
+ scale = self.opt['scale']
80
+
81
+ # Load gt and lq images. Dimension order: HWC; channel order: BGR;
82
+ # image range: [0, 1], float32.
83
+ gt_path = self.paths[index]['gt_path']
84
+ img_bytes = self.file_client.get(gt_path, 'gt')
85
+ img_gt = imfrombytes(img_bytes, float32=True)
86
+ lq_path = self.paths[index]['lq_path']
87
+ img_bytes = self.file_client.get(lq_path, 'lq')
88
+ img_lq = imfrombytes(img_bytes, float32=True)
89
+
90
+ # augmentation for training
91
+ if self.opt['phase'] == 'train':
92
+ gt_size = self.opt['gt_size']
93
+ # random crop
94
+ img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path)
95
+ # flip, rotation
96
+ img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_hflip'], self.opt['use_rot'])
97
+
98
+ # BGR to RGB, HWC to CHW, numpy to tensor
99
+ img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
100
+ # normalize
101
+ if self.mean is not None or self.std is not None:
102
+ normalize(img_lq, self.mean, self.std, inplace=True)
103
+ normalize(img_gt, self.mean, self.std, inplace=True)
104
+
105
+ return {'lq': img_lq, 'gt': img_gt, 'lq_path': lq_path, 'gt_path': gt_path}
106
+
107
+ def __len__(self):
108
+ return len(self.paths)
realesrgan/models/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import model modules for registry
6
+ # scan all the files that end with '_model.py' under the model folder
7
+ model_folder = osp.dirname(osp.abspath(__file__))
8
+ model_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(model_folder) if v.endswith('_model.py')]
9
+ # import all the model modules
10
+ _model_modules = [importlib.import_module(f'realesrgan.models.{file_name}') for file_name in model_filenames]
realesrgan/models/realesrgan_model.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import torch
4
+ from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
5
+ from basicsr.data.transforms import paired_random_crop
6
+ from basicsr.models.srgan_model import SRGANModel
7
+ from basicsr.utils import DiffJPEG, USMSharp
8
+ from basicsr.utils.img_process_util import filter2D
9
+ from basicsr.utils.registry import MODEL_REGISTRY
10
+ from collections import OrderedDict
11
+ from torch.nn import functional as F
12
+
13
+
14
+ @MODEL_REGISTRY.register()
15
+ class RealESRGANModel(SRGANModel):
16
+ """RealESRGAN Model for Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
17
+
18
+ It mainly performs:
19
+ 1. randomly synthesize LQ images in GPU tensors
20
+ 2. optimize the networks with GAN training.
21
+ """
22
+
23
+ def __init__(self, opt):
24
+ super(RealESRGANModel, self).__init__(opt)
25
+ self.jpeger = DiffJPEG(differentiable=False).cuda() # simulate JPEG compression artifacts
26
+ self.usm_sharpener = USMSharp().cuda() # do usm sharpening
27
+ self.queue_size = opt.get('queue_size', 180)
28
+
29
+ @torch.no_grad()
30
+ def _dequeue_and_enqueue(self):
31
+ """It is the training pair pool for increasing the diversity in a batch.
32
+
33
+ Batch processing limits the diversity of synthetic degradations in a batch. For example, samples in a
34
+ batch could not have different resize scaling factors. Therefore, we employ this training pair pool
35
+ to increase the degradation diversity in a batch.
36
+ """
37
+ # initialize
38
+ b, c, h, w = self.lq.size()
39
+ if not hasattr(self, 'queue_lr'):
40
+ assert self.queue_size % b == 0, f'queue size {self.queue_size} should be divisible by batch size {b}'
41
+ self.queue_lr = torch.zeros(self.queue_size, c, h, w).cuda()
42
+ _, c, h, w = self.gt.size()
43
+ self.queue_gt = torch.zeros(self.queue_size, c, h, w).cuda()
44
+ self.queue_ptr = 0
45
+ if self.queue_ptr == self.queue_size: # the pool is full
46
+ # do dequeue and enqueue
47
+ # shuffle
48
+ idx = torch.randperm(self.queue_size)
49
+ self.queue_lr = self.queue_lr[idx]
50
+ self.queue_gt = self.queue_gt[idx]
51
+ # get first b samples
52
+ lq_dequeue = self.queue_lr[0:b, :, :, :].clone()
53
+ gt_dequeue = self.queue_gt[0:b, :, :, :].clone()
54
+ # update the queue
55
+ self.queue_lr[0:b, :, :, :] = self.lq.clone()
56
+ self.queue_gt[0:b, :, :, :] = self.gt.clone()
57
+
58
+ self.lq = lq_dequeue
59
+ self.gt = gt_dequeue
60
+ else:
61
+ # only do enqueue
62
+ self.queue_lr[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.lq.clone()
63
+ self.queue_gt[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.gt.clone()
64
+ self.queue_ptr = self.queue_ptr + b
65
+
66
+ @torch.no_grad()
67
+ def feed_data(self, data):
68
+ """Accept data from dataloader, and then add two-order degradations to obtain LQ images.
69
+ """
70
+ if self.is_train and self.opt.get('high_order_degradation', True):
71
+ # training data synthesis
72
+ self.gt = data['gt'].to(self.device)
73
+ self.gt_usm = self.usm_sharpener(self.gt)
74
+
75
+ self.kernel1 = data['kernel1'].to(self.device)
76
+ self.kernel2 = data['kernel2'].to(self.device)
77
+ self.sinc_kernel = data['sinc_kernel'].to(self.device)
78
+
79
+ ori_h, ori_w = self.gt.size()[2:4]
80
+
81
+ # ----------------------- The first degradation process ----------------------- #
82
+ # blur
83
+ out = filter2D(self.gt_usm, self.kernel1)
84
+ # random resize
85
+ updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob'])[0]
86
+ if updown_type == 'up':
87
+ scale = np.random.uniform(1, self.opt['resize_range'][1])
88
+ elif updown_type == 'down':
89
+ scale = np.random.uniform(self.opt['resize_range'][0], 1)
90
+ else:
91
+ scale = 1
92
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
93
+ out = F.interpolate(out, scale_factor=scale, mode=mode)
94
+ # add noise
95
+ gray_noise_prob = self.opt['gray_noise_prob']
96
+ if np.random.uniform() < self.opt['gaussian_noise_prob']:
97
+ out = random_add_gaussian_noise_pt(
98
+ out, sigma_range=self.opt['noise_range'], clip=True, rounds=False, gray_prob=gray_noise_prob)
99
+ else:
100
+ out = random_add_poisson_noise_pt(
101
+ out,
102
+ scale_range=self.opt['poisson_scale_range'],
103
+ gray_prob=gray_noise_prob,
104
+ clip=True,
105
+ rounds=False)
106
+ # JPEG compression
107
+ jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range'])
108
+ out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
109
+ out = self.jpeger(out, quality=jpeg_p)
110
+
111
+ # ----------------------- The second degradation process ----------------------- #
112
+ # blur
113
+ if np.random.uniform() < self.opt['second_blur_prob']:
114
+ out = filter2D(out, self.kernel2)
115
+ # random resize
116
+ updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob2'])[0]
117
+ if updown_type == 'up':
118
+ scale = np.random.uniform(1, self.opt['resize_range2'][1])
119
+ elif updown_type == 'down':
120
+ scale = np.random.uniform(self.opt['resize_range2'][0], 1)
121
+ else:
122
+ scale = 1
123
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
124
+ out = F.interpolate(
125
+ out, size=(int(ori_h / self.opt['scale'] * scale), int(ori_w / self.opt['scale'] * scale)), mode=mode)
126
+ # add noise
127
+ gray_noise_prob = self.opt['gray_noise_prob2']
128
+ if np.random.uniform() < self.opt['gaussian_noise_prob2']:
129
+ out = random_add_gaussian_noise_pt(
130
+ out, sigma_range=self.opt['noise_range2'], clip=True, rounds=False, gray_prob=gray_noise_prob)
131
+ else:
132
+ out = random_add_poisson_noise_pt(
133
+ out,
134
+ scale_range=self.opt['poisson_scale_range2'],
135
+ gray_prob=gray_noise_prob,
136
+ clip=True,
137
+ rounds=False)
138
+
139
+ # JPEG compression + the final sinc filter
140
+ # We also need to resize images to desired sizes. We group [resize back + sinc filter] together
141
+ # as one operation.
142
+ # We consider two orders:
143
+ # 1. [resize back + sinc filter] + JPEG compression
144
+ # 2. JPEG compression + [resize back + sinc filter]
145
+ # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
146
+ if np.random.uniform() < 0.5:
147
+ # resize back + the final sinc filter
148
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
149
+ out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
150
+ out = filter2D(out, self.sinc_kernel)
151
+ # JPEG compression
152
+ jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
153
+ out = torch.clamp(out, 0, 1)
154
+ out = self.jpeger(out, quality=jpeg_p)
155
+ else:
156
+ # JPEG compression
157
+ jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
158
+ out = torch.clamp(out, 0, 1)
159
+ out = self.jpeger(out, quality=jpeg_p)
160
+ # resize back + the final sinc filter
161
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
162
+ out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
163
+ out = filter2D(out, self.sinc_kernel)
164
+
165
+ # clamp and round
166
+ self.lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
167
+
168
+ # random crop
169
+ gt_size = self.opt['gt_size']
170
+ (self.gt, self.gt_usm), self.lq = paired_random_crop([self.gt, self.gt_usm], self.lq, gt_size,
171
+ self.opt['scale'])
172
+
173
+ # training pair pool
174
+ self._dequeue_and_enqueue()
175
+ # sharpen self.gt again, as we have changed the self.gt with self._dequeue_and_enqueue
176
+ self.gt_usm = self.usm_sharpener(self.gt)
177
+ self.lq = self.lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract
178
+ else:
179
+ # for paired training or validation
180
+ self.lq = data['lq'].to(self.device)
181
+ if 'gt' in data:
182
+ self.gt = data['gt'].to(self.device)
183
+ self.gt_usm = self.usm_sharpener(self.gt)
184
+
185
+ def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
186
+ # do not use the synthetic process during validation
187
+ self.is_train = False
188
+ super(RealESRGANModel, self).nondist_validation(dataloader, current_iter, tb_logger, save_img)
189
+ self.is_train = True
190
+
191
+ def optimize_parameters(self, current_iter):
192
+ # usm sharpening
193
+ l1_gt = self.gt_usm
194
+ percep_gt = self.gt_usm
195
+ gan_gt = self.gt_usm
196
+ if self.opt['l1_gt_usm'] is False:
197
+ l1_gt = self.gt
198
+ if self.opt['percep_gt_usm'] is False:
199
+ percep_gt = self.gt
200
+ if self.opt['gan_gt_usm'] is False:
201
+ gan_gt = self.gt
202
+
203
+ # optimize net_g
204
+ for p in self.net_d.parameters():
205
+ p.requires_grad = False
206
+
207
+ self.optimizer_g.zero_grad()
208
+ self.output = self.net_g(self.lq)
209
+
210
+ l_g_total = 0
211
+ loss_dict = OrderedDict()
212
+ if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters):
213
+ # pixel loss
214
+ if self.cri_pix:
215
+ l_g_pix = self.cri_pix(self.output, l1_gt)
216
+ l_g_total += l_g_pix
217
+ loss_dict['l_g_pix'] = l_g_pix
218
+ # perceptual loss
219
+ if self.cri_perceptual:
220
+ l_g_percep, l_g_style = self.cri_perceptual(self.output, percep_gt)
221
+ if l_g_percep is not None:
222
+ l_g_total += l_g_percep
223
+ loss_dict['l_g_percep'] = l_g_percep
224
+ if l_g_style is not None:
225
+ l_g_total += l_g_style
226
+ loss_dict['l_g_style'] = l_g_style
227
+ # gan loss
228
+ fake_g_pred = self.net_d(self.output)
229
+ l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
230
+ l_g_total += l_g_gan
231
+ loss_dict['l_g_gan'] = l_g_gan
232
+
233
+ l_g_total.backward()
234
+ self.optimizer_g.step()
235
+
236
+ # optimize net_d
237
+ for p in self.net_d.parameters():
238
+ p.requires_grad = True
239
+
240
+ self.optimizer_d.zero_grad()
241
+ # real
242
+ real_d_pred = self.net_d(gan_gt)
243
+ l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
244
+ loss_dict['l_d_real'] = l_d_real
245
+ loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
246
+ l_d_real.backward()
247
+ # fake
248
+ fake_d_pred = self.net_d(self.output.detach().clone()) # clone for pt1.9
249
+ l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
250
+ loss_dict['l_d_fake'] = l_d_fake
251
+ loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
252
+ l_d_fake.backward()
253
+ self.optimizer_d.step()
254
+
255
+ if self.ema_decay > 0:
256
+ self.model_ema(decay=self.ema_decay)
257
+
258
+ self.log_dict = self.reduce_loss_dict(loss_dict)
realesrgan/models/realesrnet_model.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import torch
4
+ from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
5
+ from basicsr.data.transforms import paired_random_crop
6
+ from basicsr.models.sr_model import SRModel
7
+ from basicsr.utils import DiffJPEG, USMSharp
8
+ from basicsr.utils.img_process_util import filter2D
9
+ from basicsr.utils.registry import MODEL_REGISTRY
10
+ from torch.nn import functional as F
11
+
12
+
13
+ @MODEL_REGISTRY.register()
14
+ class RealESRNetModel(SRModel):
15
+ """RealESRNet Model for Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
16
+
17
+ It is trained without GAN losses.
18
+ It mainly performs:
19
+ 1. randomly synthesize LQ images in GPU tensors
20
+ 2. optimize the networks with GAN training.
21
+ """
22
+
23
+ def __init__(self, opt):
24
+ super(RealESRNetModel, self).__init__(opt)
25
+ self.jpeger = DiffJPEG(differentiable=False).cuda() # simulate JPEG compression artifacts
26
+ self.usm_sharpener = USMSharp().cuda() # do usm sharpening
27
+ self.queue_size = opt.get('queue_size', 180)
28
+
29
+ @torch.no_grad()
30
+ def _dequeue_and_enqueue(self):
31
+ """It is the training pair pool for increasing the diversity in a batch.
32
+
33
+ Batch processing limits the diversity of synthetic degradations in a batch. For example, samples in a
34
+ batch could not have different resize scaling factors. Therefore, we employ this training pair pool
35
+ to increase the degradation diversity in a batch.
36
+ """
37
+ # initialize
38
+ b, c, h, w = self.lq.size()
39
+ if not hasattr(self, 'queue_lr'):
40
+ assert self.queue_size % b == 0, f'queue size {self.queue_size} should be divisible by batch size {b}'
41
+ self.queue_lr = torch.zeros(self.queue_size, c, h, w).cuda()
42
+ _, c, h, w = self.gt.size()
43
+ self.queue_gt = torch.zeros(self.queue_size, c, h, w).cuda()
44
+ self.queue_ptr = 0
45
+ if self.queue_ptr == self.queue_size: # the pool is full
46
+ # do dequeue and enqueue
47
+ # shuffle
48
+ idx = torch.randperm(self.queue_size)
49
+ self.queue_lr = self.queue_lr[idx]
50
+ self.queue_gt = self.queue_gt[idx]
51
+ # get first b samples
52
+ lq_dequeue = self.queue_lr[0:b, :, :, :].clone()
53
+ gt_dequeue = self.queue_gt[0:b, :, :, :].clone()
54
+ # update the queue
55
+ self.queue_lr[0:b, :, :, :] = self.lq.clone()
56
+ self.queue_gt[0:b, :, :, :] = self.gt.clone()
57
+
58
+ self.lq = lq_dequeue
59
+ self.gt = gt_dequeue
60
+ else:
61
+ # only do enqueue
62
+ self.queue_lr[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.lq.clone()
63
+ self.queue_gt[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.gt.clone()
64
+ self.queue_ptr = self.queue_ptr + b
65
+
66
+ @torch.no_grad()
67
+ def feed_data(self, data):
68
+ """Accept data from dataloader, and then add two-order degradations to obtain LQ images.
69
+ """
70
+ if self.is_train and self.opt.get('high_order_degradation', True):
71
+ # training data synthesis
72
+ self.gt = data['gt'].to(self.device)
73
+ # USM sharpen the GT images
74
+ if self.opt['gt_usm'] is True:
75
+ self.gt = self.usm_sharpener(self.gt)
76
+
77
+ self.kernel1 = data['kernel1'].to(self.device)
78
+ self.kernel2 = data['kernel2'].to(self.device)
79
+ self.sinc_kernel = data['sinc_kernel'].to(self.device)
80
+
81
+ ori_h, ori_w = self.gt.size()[2:4]
82
+
83
+ # ----------------------- The first degradation process ----------------------- #
84
+ # blur
85
+ out = filter2D(self.gt, self.kernel1)
86
+ # random resize
87
+ updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob'])[0]
88
+ if updown_type == 'up':
89
+ scale = np.random.uniform(1, self.opt['resize_range'][1])
90
+ elif updown_type == 'down':
91
+ scale = np.random.uniform(self.opt['resize_range'][0], 1)
92
+ else:
93
+ scale = 1
94
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
95
+ out = F.interpolate(out, scale_factor=scale, mode=mode)
96
+ # add noise
97
+ gray_noise_prob = self.opt['gray_noise_prob']
98
+ if np.random.uniform() < self.opt['gaussian_noise_prob']:
99
+ out = random_add_gaussian_noise_pt(
100
+ out, sigma_range=self.opt['noise_range'], clip=True, rounds=False, gray_prob=gray_noise_prob)
101
+ else:
102
+ out = random_add_poisson_noise_pt(
103
+ out,
104
+ scale_range=self.opt['poisson_scale_range'],
105
+ gray_prob=gray_noise_prob,
106
+ clip=True,
107
+ rounds=False)
108
+ # JPEG compression
109
+ jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range'])
110
+ out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
111
+ out = self.jpeger(out, quality=jpeg_p)
112
+
113
+ # ----------------------- The second degradation process ----------------------- #
114
+ # blur
115
+ if np.random.uniform() < self.opt['second_blur_prob']:
116
+ out = filter2D(out, self.kernel2)
117
+ # random resize
118
+ updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob2'])[0]
119
+ if updown_type == 'up':
120
+ scale = np.random.uniform(1, self.opt['resize_range2'][1])
121
+ elif updown_type == 'down':
122
+ scale = np.random.uniform(self.opt['resize_range2'][0], 1)
123
+ else:
124
+ scale = 1
125
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
126
+ out = F.interpolate(
127
+ out, size=(int(ori_h / self.opt['scale'] * scale), int(ori_w / self.opt['scale'] * scale)), mode=mode)
128
+ # add noise
129
+ gray_noise_prob = self.opt['gray_noise_prob2']
130
+ if np.random.uniform() < self.opt['gaussian_noise_prob2']:
131
+ out = random_add_gaussian_noise_pt(
132
+ out, sigma_range=self.opt['noise_range2'], clip=True, rounds=False, gray_prob=gray_noise_prob)
133
+ else:
134
+ out = random_add_poisson_noise_pt(
135
+ out,
136
+ scale_range=self.opt['poisson_scale_range2'],
137
+ gray_prob=gray_noise_prob,
138
+ clip=True,
139
+ rounds=False)
140
+
141
+ # JPEG compression + the final sinc filter
142
+ # We also need to resize images to desired sizes. We group [resize back + sinc filter] together
143
+ # as one operation.
144
+ # We consider two orders:
145
+ # 1. [resize back + sinc filter] + JPEG compression
146
+ # 2. JPEG compression + [resize back + sinc filter]
147
+ # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
148
+ if np.random.uniform() < 0.5:
149
+ # resize back + the final sinc filter
150
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
151
+ out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
152
+ out = filter2D(out, self.sinc_kernel)
153
+ # JPEG compression
154
+ jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
155
+ out = torch.clamp(out, 0, 1)
156
+ out = self.jpeger(out, quality=jpeg_p)
157
+ else:
158
+ # JPEG compression
159
+ jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
160
+ out = torch.clamp(out, 0, 1)
161
+ out = self.jpeger(out, quality=jpeg_p)
162
+ # resize back + the final sinc filter
163
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
164
+ out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
165
+ out = filter2D(out, self.sinc_kernel)
166
+
167
+ # clamp and round
168
+ self.lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
169
+
170
+ # random crop
171
+ gt_size = self.opt['gt_size']
172
+ self.gt, self.lq = paired_random_crop(self.gt, self.lq, gt_size, self.opt['scale'])
173
+
174
+ # training pair pool
175
+ self._dequeue_and_enqueue()
176
+ self.lq = self.lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract
177
+ else:
178
+ # for paired training or validation
179
+ self.lq = data['lq'].to(self.device)
180
+ if 'gt' in data:
181
+ self.gt = data['gt'].to(self.device)
182
+ self.gt_usm = self.usm_sharpener(self.gt)
183
+
184
+ def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
185
+ # do not use the synthetic process during validation
186
+ self.is_train = False
187
+ super(RealESRNetModel, self).nondist_validation(dataloader, current_iter, tb_logger, save_img)
188
+ self.is_train = True
realesrgan/train.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ import os.path as osp
3
+ from basicsr.train import train_pipeline
4
+
5
+ import realesrgan.archs
6
+ import realesrgan.data
7
+ import realesrgan.models
8
+
9
+ if __name__ == '__main__':
10
+ root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
11
+ train_pipeline(root_path)
realesrgan/utils.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import os
5
+ import queue
6
+ import threading
7
+ import torch
8
+ from basicsr.utils.download_util import load_file_from_url
9
+ from torch.nn import functional as F
10
+
11
+ ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
12
+
13
+
14
+ class RealESRGANer():
15
+ """A helper class for upsampling images with RealESRGAN.
16
+
17
+ Args:
18
+ scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
19
+ model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
20
+ model (nn.Module): The defined network. Default: None.
21
+ tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
22
+ input images into tiles, and then process each of them. Finally, they will be merged into one image.
23
+ 0 denotes for do not use tile. Default: 0.
24
+ tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
25
+ pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
26
+ half (float): Whether to use half precision during inference. Default: False.
27
+ """
28
+
29
+ def __init__(self, scale, model_path, model=None, tile=0, tile_pad=10, pre_pad=10, half=False):
30
+ self.scale = scale
31
+ self.tile_size = tile
32
+ self.tile_pad = tile_pad
33
+ self.pre_pad = pre_pad
34
+ self.mod_scale = None
35
+ self.half = half
36
+
37
+ # initialize model
38
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
39
+ # if the model_path starts with https, it will first download models to the folder: realesrgan/weights
40
+ if model_path.startswith('https://'):
41
+ model_path = load_file_from_url(
42
+ url=model_path, model_dir=os.path.join(ROOT_DIR, 'realesrgan/weights'), progress=True, file_name=None)
43
+ loadnet = torch.load(model_path, map_location=torch.device('cpu'))
44
+ # prefer to use params_ema
45
+ if 'params_ema' in loadnet:
46
+ keyname = 'params_ema'
47
+ else:
48
+ keyname = 'params'
49
+ model.load_state_dict(loadnet[keyname], strict=True)
50
+ model.eval()
51
+ self.model = model.to(self.device)
52
+ if self.half:
53
+ self.model = self.model.half()
54
+
55
+ def pre_process(self, img):
56
+ """Pre-process, such as pre-pad and mod pad, so that the images can be divisible
57
+ """
58
+ img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
59
+ self.img = img.unsqueeze(0).to(self.device)
60
+ if self.half:
61
+ self.img = self.img.half()
62
+
63
+ # pre_pad
64
+ if self.pre_pad != 0:
65
+ self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
66
+ # mod pad for divisible borders
67
+ if self.scale == 2:
68
+ self.mod_scale = 2
69
+ elif self.scale == 1:
70
+ self.mod_scale = 4
71
+ if self.mod_scale is not None:
72
+ self.mod_pad_h, self.mod_pad_w = 0, 0
73
+ _, _, h, w = self.img.size()
74
+ if (h % self.mod_scale != 0):
75
+ self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
76
+ if (w % self.mod_scale != 0):
77
+ self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
78
+ self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
79
+
80
+ def process(self):
81
+ # model inference
82
+ self.output = self.model(self.img)
83
+
84
+ def tile_process(self):
85
+ """It will first crop input images to tiles, and then process each tile.
86
+ Finally, all the processed tiles are merged into one images.
87
+
88
+ Modified from: https://github.com/ata4/esrgan-launcher
89
+ """
90
+ batch, channel, height, width = self.img.shape
91
+ output_height = height * self.scale
92
+ output_width = width * self.scale
93
+ output_shape = (batch, channel, output_height, output_width)
94
+
95
+ # start with black image
96
+ self.output = self.img.new_zeros(output_shape)
97
+ tiles_x = math.ceil(width / self.tile_size)
98
+ tiles_y = math.ceil(height / self.tile_size)
99
+
100
+ # loop over all tiles
101
+ for y in range(tiles_y):
102
+ for x in range(tiles_x):
103
+ # extract tile from input image
104
+ ofs_x = x * self.tile_size
105
+ ofs_y = y * self.tile_size
106
+ # input tile area on total image
107
+ input_start_x = ofs_x
108
+ input_end_x = min(ofs_x + self.tile_size, width)
109
+ input_start_y = ofs_y
110
+ input_end_y = min(ofs_y + self.tile_size, height)
111
+
112
+ # input tile area on total image with padding
113
+ input_start_x_pad = max(input_start_x - self.tile_pad, 0)
114
+ input_end_x_pad = min(input_end_x + self.tile_pad, width)
115
+ input_start_y_pad = max(input_start_y - self.tile_pad, 0)
116
+ input_end_y_pad = min(input_end_y + self.tile_pad, height)
117
+
118
+ # input tile dimensions
119
+ input_tile_width = input_end_x - input_start_x
120
+ input_tile_height = input_end_y - input_start_y
121
+ tile_idx = y * tiles_x + x + 1
122
+ input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
123
+
124
+ # upscale tile
125
+ try:
126
+ with torch.no_grad():
127
+ output_tile = self.model(input_tile)
128
+ except RuntimeError as error:
129
+ print('Error', error)
130
+ print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
131
+
132
+ # output tile area on total image
133
+ output_start_x = input_start_x * self.scale
134
+ output_end_x = input_end_x * self.scale
135
+ output_start_y = input_start_y * self.scale
136
+ output_end_y = input_end_y * self.scale
137
+
138
+ # output tile area without padding
139
+ output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
140
+ output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
141
+ output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
142
+ output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
143
+
144
+ # put tile into output image
145
+ self.output[:, :, output_start_y:output_end_y,
146
+ output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
147
+ output_start_x_tile:output_end_x_tile]
148
+
149
+ def post_process(self):
150
+ # remove extra pad
151
+ if self.mod_scale is not None:
152
+ _, _, h, w = self.output.size()
153
+ self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
154
+ # remove prepad
155
+ if self.pre_pad != 0:
156
+ _, _, h, w = self.output.size()
157
+ self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
158
+ return self.output
159
+
160
+ @torch.no_grad()
161
+ def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
162
+ h_input, w_input = img.shape[0:2]
163
+ # img: numpy
164
+ img = img.astype(np.float32)
165
+ if np.max(img) > 256: # 16-bit image
166
+ max_range = 65535
167
+ print('\tInput is a 16-bit image')
168
+ else:
169
+ max_range = 255
170
+ img = img / max_range
171
+ if len(img.shape) == 2: # gray image
172
+ img_mode = 'L'
173
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
174
+ elif img.shape[2] == 4: # RGBA image with alpha channel
175
+ img_mode = 'RGBA'
176
+ alpha = img[:, :, 3]
177
+ img = img[:, :, 0:3]
178
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
179
+ if alpha_upsampler == 'realesrgan':
180
+ alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
181
+ else:
182
+ img_mode = 'RGB'
183
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
184
+
185
+ # ------------------- process image (without the alpha channel) ------------------- #
186
+ self.pre_process(img)
187
+ if self.tile_size > 0:
188
+ self.tile_process()
189
+ else:
190
+ self.process()
191
+ output_img = self.post_process()
192
+ output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
193
+ output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
194
+ if img_mode == 'L':
195
+ output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
196
+
197
+ # ------------------- process the alpha channel if necessary ------------------- #
198
+ if img_mode == 'RGBA':
199
+ if alpha_upsampler == 'realesrgan':
200
+ self.pre_process(alpha)
201
+ if self.tile_size > 0:
202
+ self.tile_process()
203
+ else:
204
+ self.process()
205
+ output_alpha = self.post_process()
206
+ output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
207
+ output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
208
+ output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
209
+ else: # use the cv2 resize for alpha channel
210
+ h, w = alpha.shape[0:2]
211
+ output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
212
+
213
+ # merge the alpha channel
214
+ output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
215
+ output_img[:, :, 3] = output_alpha
216
+
217
+ # ------------------------------ return ------------------------------ #
218
+ if max_range == 65535: # 16-bit image
219
+ output = (output_img * 65535.0).round().astype(np.uint16)
220
+ else:
221
+ output = (output_img * 255.0).round().astype(np.uint8)
222
+
223
+ if outscale is not None and outscale != float(self.scale):
224
+ output = cv2.resize(
225
+ output, (
226
+ int(w_input * outscale),
227
+ int(h_input * outscale),
228
+ ), interpolation=cv2.INTER_LANCZOS4)
229
+
230
+ return output, img_mode
231
+
232
+
233
+ class PrefetchReader(threading.Thread):
234
+ """Prefetch images.
235
+
236
+ Args:
237
+ img_list (list[str]): A image list of image paths to be read.
238
+ num_prefetch_queue (int): Number of prefetch queue.
239
+ """
240
+
241
+ def __init__(self, img_list, num_prefetch_queue):
242
+ super().__init__()
243
+ self.que = queue.Queue(num_prefetch_queue)
244
+ self.img_list = img_list
245
+
246
+ def run(self):
247
+ for img_path in self.img_list:
248
+ img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
249
+ self.que.put(img)
250
+
251
+ self.que.put(None)
252
+
253
+ def __next__(self):
254
+ next_item = self.que.get()
255
+ if next_item is None:
256
+ raise StopIteration
257
+ return next_item
258
+
259
+ def __iter__(self):
260
+ return self
261
+
262
+
263
+ class IOConsumer(threading.Thread):
264
+
265
+ def __init__(self, opt, que, qid):
266
+ super().__init__()
267
+ self._queue = que
268
+ self.qid = qid
269
+ self.opt = opt
270
+
271
+ def run(self):
272
+ while True:
273
+ msg = self._queue.get()
274
+ if isinstance(msg, str) and msg == 'quit':
275
+ break
276
+
277
+ output = msg['output']
278
+ save_path = msg['save_path']
279
+ cv2.imwrite(save_path, output)
280
+ print(f'IO worker {self.qid} is done.')
realesrgan/weights/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Weights
2
+
3
+ Put the downloaded weights to this folder.
requirements.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ numpy
3
+ opencv-python-headless
4
+ setuptools
5
+ Pillow
6
+ gradio
7
+ torchvision
8
+ addict
9
+ future
10
+ lmdb
11
+ pyyaml
12
+ requests
13
+ scikit-image
14
+ scipy
15
+ tb-nightly
16
+ tqdm
17
+ yapf
18
+ psutil
scripts/extract_subimages.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import cv2
3
+ import numpy as np
4
+ import os
5
+ import sys
6
+ from basicsr.utils import scandir
7
+ from multiprocessing import Pool
8
+ from os import path as osp
9
+ from tqdm import tqdm
10
+
11
+
12
+ def main(args):
13
+ """A multi-thread tool to crop large images to sub-images for faster IO.
14
+
15
+ opt (dict): Configuration dict. It contains:
16
+ n_thread (int): Thread number.
17
+ compression_level (int): CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size
18
+ and longer compression time. Use 0 for faster CPU decompression. Default: 3, same in cv2.
19
+ input_folder (str): Path to the input folder.
20
+ save_folder (str): Path to save folder.
21
+ crop_size (int): Crop size.
22
+ step (int): Step for overlapped sliding window.
23
+ thresh_size (int): Threshold size. Patches whose size is lower than thresh_size will be dropped.
24
+
25
+ Usage:
26
+ For each folder, run this script.
27
+ Typically, there are GT folder and LQ folder to be processed for DIV2K dataset.
28
+ After process, each sub_folder should have the same number of subimages.
29
+ Remember to modify opt configurations according to your settings.
30
+ """
31
+
32
+ opt = {}
33
+ opt['n_thread'] = args.n_thread
34
+ opt['compression_level'] = args.compression_level
35
+ opt['input_folder'] = args.input
36
+ opt['save_folder'] = args.output
37
+ opt['crop_size'] = args.crop_size
38
+ opt['step'] = args.step
39
+ opt['thresh_size'] = args.thresh_size
40
+ extract_subimages(opt)
41
+
42
+
43
+ def extract_subimages(opt):
44
+ """Crop images to subimages.
45
+
46
+ Args:
47
+ opt (dict): Configuration dict. It contains:
48
+ input_folder (str): Path to the input folder.
49
+ save_folder (str): Path to save folder.
50
+ n_thread (int): Thread number.
51
+ """
52
+ input_folder = opt['input_folder']
53
+ save_folder = opt['save_folder']
54
+ if not osp.exists(save_folder):
55
+ os.makedirs(save_folder)
56
+ print(f'mkdir {save_folder} ...')
57
+ else:
58
+ print(f'Folder {save_folder} already exists. Exit.')
59
+ sys.exit(1)
60
+
61
+ # scan all images
62
+ img_list = list(scandir(input_folder, full_path=True))
63
+
64
+ pbar = tqdm(total=len(img_list), unit='image', desc='Extract')
65
+ pool = Pool(opt['n_thread'])
66
+ for path in img_list:
67
+ pool.apply_async(worker, args=(path, opt), callback=lambda arg: pbar.update(1))
68
+ pool.close()
69
+ pool.join()
70
+ pbar.close()
71
+ print('All processes done.')
72
+
73
+
74
+ def worker(path, opt):
75
+ """Worker for each process.
76
+
77
+ Args:
78
+ path (str): Image path.
79
+ opt (dict): Configuration dict. It contains:
80
+ crop_size (int): Crop size.
81
+ step (int): Step for overlapped sliding window.
82
+ thresh_size (int): Threshold size. Patches whose size is lower than thresh_size will be dropped.
83
+ save_folder (str): Path to save folder.
84
+ compression_level (int): for cv2.IMWRITE_PNG_COMPRESSION.
85
+
86
+ Returns:
87
+ process_info (str): Process information displayed in progress bar.
88
+ """
89
+ crop_size = opt['crop_size']
90
+ step = opt['step']
91
+ thresh_size = opt['thresh_size']
92
+ img_name, extension = osp.splitext(osp.basename(path))
93
+
94
+ # remove the x2, x3, x4 and x8 in the filename for DIV2K
95
+ img_name = img_name.replace('x2', '').replace('x3', '').replace('x4', '').replace('x8', '')
96
+
97
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
98
+
99
+ h, w = img.shape[0:2]
100
+ h_space = np.arange(0, h - crop_size + 1, step)
101
+ if h - (h_space[-1] + crop_size) > thresh_size:
102
+ h_space = np.append(h_space, h - crop_size)
103
+ w_space = np.arange(0, w - crop_size + 1, step)
104
+ if w - (w_space[-1] + crop_size) > thresh_size:
105
+ w_space = np.append(w_space, w - crop_size)
106
+
107
+ index = 0
108
+ for x in h_space:
109
+ for y in w_space:
110
+ index += 1
111
+ cropped_img = img[x:x + crop_size, y:y + crop_size, ...]
112
+ cropped_img = np.ascontiguousarray(cropped_img)
113
+ cv2.imwrite(
114
+ osp.join(opt['save_folder'], f'{img_name}_s{index:03d}{extension}'), cropped_img,
115
+ [cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']])
116
+ process_info = f'Processing {img_name} ...'
117
+ return process_info
118
+
119
+
120
+ if __name__ == '__main__':
121
+ parser = argparse.ArgumentParser()
122
+ parser.add_argument('--input', type=str, default='datasets/DF2K/DF2K_HR', help='Input folder')
123
+ parser.add_argument('--output', type=str, default='datasets/DF2K/DF2K_HR_sub', help='Output folder')
124
+ parser.add_argument('--crop_size', type=int, default=480, help='Crop size')
125
+ parser.add_argument('--step', type=int, default=240, help='Step for overlapped sliding window')
126
+ parser.add_argument(
127
+ '--thresh_size',
128
+ type=int,
129
+ default=0,
130
+ help='Threshold size. Patches whose size is lower than thresh_size will be dropped.')
131
+ parser.add_argument('--n_thread', type=int, default=20, help='Thread number.')
132
+ parser.add_argument('--compression_level', type=int, default=3, help='Compression level')
133
+ args = parser.parse_args()
134
+
135
+ main(args)
scripts/generate_meta_info.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import cv2
3
+ import glob
4
+ import os
5
+
6
+
7
+ def main(args):
8
+ txt_file = open(args.meta_info, 'w')
9
+ for folder, root in zip(args.input, args.root):
10
+ img_paths = sorted(glob.glob(os.path.join(folder, '*')))
11
+ for img_path in img_paths:
12
+ status = True
13
+ if args.check:
14
+ # read the image once for check, as some images may have errors
15
+ try:
16
+ img = cv2.imread(img_path)
17
+ except (IOError, OSError) as error:
18
+ print(f'Read {img_path} error: {error}')
19
+ status = False
20
+ if img is None:
21
+ status = False
22
+ print(f'Img is None: {img_path}')
23
+ if status:
24
+ # get the relative path
25
+ img_name = os.path.relpath(img_path, root)
26
+ print(img_name)
27
+ txt_file.write(f'{img_name}\n')
28
+
29
+
30
+ if __name__ == '__main__':
31
+ """Generate meta info (txt file) for only Ground-Truth images.
32
+
33
+ It can also generate meta info from several folders into one txt file.
34
+ """
35
+ parser = argparse.ArgumentParser()
36
+ parser.add_argument(
37
+ '--input',
38
+ nargs='+',
39
+ default=['datasets/DF2K/DF2K_HR', 'datasets/DF2K/DF2K_multiscale'],
40
+ help='Input folder, can be a list')
41
+ parser.add_argument(
42
+ '--root',
43
+ nargs='+',
44
+ default=['datasets/DF2K', 'datasets/DF2K'],
45
+ help='Folder root, should have the length as input folders')
46
+ parser.add_argument(
47
+ '--meta_info',
48
+ type=str,
49
+ default='datasets/DF2K/meta_info/meta_info_DF2Kmultiscale.txt',
50
+ help='txt path for meta info')
51
+ parser.add_argument('--check', action='store_true', help='Read image to check whether it is ok')
52
+ args = parser.parse_args()
53
+
54
+ assert len(args.input) == len(args.root), ('Input folder and folder root should have the same length, but got '
55
+ f'{len(args.input)} and {len(args.root)}.')
56
+ os.makedirs(os.path.dirname(args.meta_info), exist_ok=True)
57
+
58
+ main(args)
scripts/generate_meta_info_pairdata.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import os
4
+
5
+
6
+ def main(args):
7
+ txt_file = open(args.meta_info, 'w')
8
+ # sca images
9
+ img_paths_gt = sorted(glob.glob(os.path.join(args.input[0], '*')))
10
+ img_paths_lq = sorted(glob.glob(os.path.join(args.input[1], '*')))
11
+
12
+ assert len(img_paths_gt) == len(img_paths_lq), ('GT folder and LQ folder should have the same length, but got '
13
+ f'{len(img_paths_gt)} and {len(img_paths_lq)}.')
14
+
15
+ for img_path_gt, img_path_lq in zip(img_paths_gt, img_paths_lq):
16
+ # get the relative paths
17
+ img_name_gt = os.path.relpath(img_path_gt, args.root[0])
18
+ img_name_lq = os.path.relpath(img_path_lq, args.root[1])
19
+ print(f'{img_name_gt}, {img_name_lq}')
20
+ txt_file.write(f'{img_name_gt}, {img_name_lq}\n')
21
+
22
+
23
+ if __name__ == '__main__':
24
+ """This script is used to generate meta info (txt file) for paired images.
25
+ """
26
+ parser = argparse.ArgumentParser()
27
+ parser.add_argument(
28
+ '--input',
29
+ nargs='+',
30
+ default=['datasets/DF2K/DIV2K_train_HR_sub', 'datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub'],
31
+ help='Input folder, should be [gt_folder, lq_folder]')
32
+ parser.add_argument('--root', nargs='+', default=[None, None], help='Folder root, will use the ')
33
+ parser.add_argument(
34
+ '--meta_info',
35
+ type=str,
36
+ default='datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt',
37
+ help='txt path for meta info')
38
+ args = parser.parse_args()
39
+
40
+ assert len(args.input) == 2, 'Input folder should have two elements: gt folder and lq folder'
41
+ assert len(args.root) == 2, 'Root path should have two elements: root for gt folder and lq folder'
42
+ os.makedirs(os.path.dirname(args.meta_info), exist_ok=True)
43
+ for i in range(2):
44
+ if args.input[i].endswith('/'):
45
+ args.input[i] = args.input[i][:-1]
46
+ if args.root[i] is None:
47
+ args.root[i] = os.path.dirname(args.input[i])
48
+
49
+ main(args)
scripts/generate_multiscale_DF2K.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import os
4
+ from PIL import Image
5
+
6
+
7
+ def main(args):
8
+ # For DF2K, we consider the following three scales,
9
+ # and the smallest image whose shortest edge is 400
10
+ scale_list = [0.75, 0.5, 1 / 3]
11
+ shortest_edge = 400
12
+
13
+ path_list = sorted(glob.glob(os.path.join(args.input, '*')))
14
+ for path in path_list:
15
+ print(path)
16
+ basename = os.path.splitext(os.path.basename(path))[0]
17
+
18
+ img = Image.open(path)
19
+ width, height = img.size
20
+ for idx, scale in enumerate(scale_list):
21
+ print(f'\t{scale:.2f}')
22
+ rlt = img.resize((int(width * scale), int(height * scale)), resample=Image.LANCZOS)
23
+ rlt.save(os.path.join(args.output, f'{basename}T{idx}.png'))
24
+
25
+ # save the smallest image which the shortest edge is 400
26
+ if width < height:
27
+ ratio = height / width
28
+ width = shortest_edge
29
+ height = int(width * ratio)
30
+ else:
31
+ ratio = width / height
32
+ height = shortest_edge
33
+ width = int(height * ratio)
34
+ rlt = img.resize((int(width), int(height)), resample=Image.LANCZOS)
35
+ rlt.save(os.path.join(args.output, f'{basename}T{idx+1}.png'))
36
+
37
+
38
+ if __name__ == '__main__':
39
+ """Generate multi-scale versions for GT images with LANCZOS resampling.
40
+ It is now used for DF2K dataset (DIV2K + Flickr 2K)
41
+ """
42
+ parser = argparse.ArgumentParser()
43
+ parser.add_argument('--input', type=str, default='datasets/DF2K/DF2K_HR', help='Input folder')
44
+ parser.add_argument('--output', type=str, default='datasets/DF2K/DF2K_multiscale', help='Output folder')
45
+ args = parser.parse_args()
46
+
47
+ os.makedirs(args.output, exist_ok=True)
48
+ main(args)
scripts/pytorch2onnx.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import torch
3
+ import torch.onnx
4
+ from basicsr.archs.rrdbnet_arch import RRDBNet
5
+
6
+
7
+ def main(args):
8
+ # An instance of the model
9
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
10
+ if args.params:
11
+ keyname = 'params'
12
+ else:
13
+ keyname = 'params_ema'
14
+ model.load_state_dict(torch.load(args.input)[keyname])
15
+ # set the train mode to false since we will only run the forward pass.
16
+ model.train(False)
17
+ model.cpu().eval()
18
+
19
+ # An example input
20
+ x = torch.rand(1, 3, 64, 64)
21
+ # Export the model
22
+ with torch.no_grad():
23
+ torch_out = torch.onnx._export(model, x, args.output, opset_version=11, export_params=True)
24
+ print(torch_out.shape)
25
+
26
+
27
+ if __name__ == '__main__':
28
+ """Convert pytorch model to onnx models"""
29
+ parser = argparse.ArgumentParser()
30
+ parser.add_argument(
31
+ '--input', type=str, default='experiments/pretrained_models/RealESRGAN_x4plus.pth', help='Input model path')
32
+ parser.add_argument('--output', type=str, default='realesrgan-x4.onnx', help='Output onnx path')
33
+ parser.add_argument('--params', action='store_false', help='Use params instead of params_ema')
34
+ args = parser.parse_args()
35
+
36
+ main(args)
setup.cfg ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [flake8]
2
+ ignore =
3
+ # line break before binary operator (W503)
4
+ W503,
5
+ # line break after binary operator (W504)
6
+ W504,
7
+ max-line-length=120
8
+
9
+ [yapf]
10
+ based_on_style = pep8
11
+ column_limit = 120
12
+ blank_line_before_nested_class_or_def = true
13
+ split_before_expression_after_opening_paren = true
14
+
15
+ [isort]
16
+ line_length = 120
17
+ multi_line_output = 0
18
+ known_standard_library = pkg_resources,setuptools
19
+ known_first_party = realesrgan
20
+ known_third_party = basicsr,cv2,numpy,torch
21
+ no_lines_before = STDLIB,LOCALFOLDER
22
+ default_section = THIRDPARTY
setup.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ from setuptools import find_packages, setup
4
+
5
+ import os
6
+ import subprocess
7
+ import time
8
+
9
+ version_file = 'realesrgan/version.py'
10
+
11
+
12
+ def readme():
13
+ with open('README.md', encoding='utf-8') as f:
14
+ content = f.read()
15
+ return content
16
+
17
+
18
+ def get_git_hash():
19
+
20
+ def _minimal_ext_cmd(cmd):
21
+ # construct minimal environment
22
+ env = {}
23
+ for k in ['SYSTEMROOT', 'PATH', 'HOME']:
24
+ v = os.environ.get(k)
25
+ if v is not None:
26
+ env[k] = v
27
+ # LANGUAGE is used on win32
28
+ env['LANGUAGE'] = 'C'
29
+ env['LANG'] = 'C'
30
+ env['LC_ALL'] = 'C'
31
+ out = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=env).communicate()[0]
32
+ return out
33
+
34
+ try:
35
+ out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD'])
36
+ sha = out.strip().decode('ascii')
37
+ except OSError:
38
+ sha = 'unknown'
39
+
40
+ return sha
41
+
42
+
43
+ def get_hash():
44
+ if os.path.exists('.git'):
45
+ sha = get_git_hash()[:7]
46
+ else:
47
+ sha = 'unknown'
48
+
49
+ return sha
50
+
51
+
52
+ def write_version_py():
53
+ content = """# GENERATED VERSION FILE
54
+ # TIME: {}
55
+ __version__ = '{}'
56
+ __gitsha__ = '{}'
57
+ version_info = ({})
58
+ """
59
+ sha = get_hash()
60
+ with open('VERSION', 'r') as f:
61
+ SHORT_VERSION = f.read().strip()
62
+ VERSION_INFO = ', '.join([x if x.isdigit() else f'"{x}"' for x in SHORT_VERSION.split('.')])
63
+
64
+ version_file_str = content.format(time.asctime(), SHORT_VERSION, sha, VERSION_INFO)
65
+ with open(version_file, 'w') as f:
66
+ f.write(version_file_str)
67
+
68
+
69
+ def get_version():
70
+ with open(version_file, 'r') as f:
71
+ exec(compile(f.read(), version_file, 'exec'))
72
+ return locals()['__version__']
73
+
74
+
75
+ def get_requirements(filename='requirements.txt'):
76
+ here = os.path.dirname(os.path.realpath(__file__))
77
+ with open(os.path.join(here, filename), 'r') as f:
78
+ requires = [line.replace('\n', '') for line in f.readlines()]
79
+ return requires
80
+
81
+
82
+ if __name__ == '__main__':
83
+ write_version_py()
84
+ setup(
85
+ name='realesrgan',
86
+ version=get_version(),
87
+ description='Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration',
88
+ long_description=readme(),
89
+ long_description_content_type='text/markdown',
90
+ author='Xintao Wang',
91
+ author_email='[email protected]',
92
+ keywords='computer vision, pytorch, image restoration, super-resolution, esrgan, real-esrgan',
93
+ url='https://github.com/xinntao/Real-ESRGAN',
94
+ include_package_data=True,
95
+ packages=find_packages(exclude=('options', 'datasets', 'experiments', 'results', 'tb_logger', 'wandb')),
96
+ classifiers=[
97
+ 'Development Status :: 4 - Beta',
98
+ 'License :: OSI Approved :: Apache Software License',
99
+ 'Operating System :: OS Independent',
100
+ 'Programming Language :: Python :: 3',
101
+ 'Programming Language :: Python :: 3.7',
102
+ 'Programming Language :: Python :: 3.8',
103
+ ],
104
+ license='BSD-3-Clause License',
105
+ setup_requires=['cython', 'numpy'],
106
+ install_requires=get_requirements(),
107
+ zip_safe=False)
tests/data/gt.lmdb/data.mdb ADDED
Binary file (758 kB). View file
 
tests/data/gt.lmdb/lock.mdb ADDED
Binary file (8.19 kB). View file
 
tests/data/gt.lmdb/meta_info.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ baboon.png (480,500,3) 1
2
+ comic.png (360,240,3) 1
tests/data/gt/baboon.png ADDED
tests/data/gt/comic.png ADDED
tests/data/lq.lmdb/data.mdb ADDED
Binary file (65.5 kB). View file
 
tests/data/lq.lmdb/lock.mdb ADDED
Binary file (8.19 kB). View file
 
tests/data/lq.lmdb/meta_info.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ baboon.png (120,125,3) 1
2
+ comic.png (80,60,3) 1