# import gradio as gr # from transformers import pipeline # # Load the model # pipe = pipeline("audio-classification", model="superb/wav2vec2-base-superb-er") # def classify_emotion(audio): # result = pipe(audio, top_k=5) # return result # # Gradio interface for uploading an audio file # gr.Interface(fn=classify_emotion, inputs=gr.Audio(sources=['upload', 'microphone'], type="filepath"), outputs="text").launch() import gradio as gr whisper = gr.load("models/superb/wav2vec2-base-superb-er") def transcribe(audio): return whisper(audio) gr.Interface(transcribe, gr.Audio(sources=['upload', 'microphone'], type="filepath"), gr.Textbox()).launch()