import gradio as gr from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import logging # Setup logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') # Load the Flan-T5 Small model and tokenizer model_id = "google/flan-t5-small" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSeq2SeqLM.from_pretrained(model_id) def correct_htr(raw_htr_text, max_new_tokens, temperature): try: logging.info("Processing HTR correction...") prompt = f"Correct this text: {raw_htr_text}" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens), temperature=temperature) corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return corrected_text except Exception as e: logging.error(f"Error in HTR correction: {e}", exc_info=True) return str(e) def summarize_text(legal_text, max_new_tokens, temperature): try: logging.info("Processing summarization...") prompt = f"Summarize the following legal text: {legal_text}" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens), temperature=temperature) summary = tokenizer.decode(outputs[0], skip_special_tokens=True) return summary except Exception as e: logging.error(f"Error in summarization: {e}", exc_info=True) return str(e) def answer_question(legal_text, question, max_new_tokens, temperature): try: logging.info("Processing question-answering...") prompt = f"Answer the following question based on the provided context:\n\nQuestion: {question}\n\nContext: {legal_text}" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens), temperature=temperature) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer except Exception as e: logging.error(f"Error in question-answering: {e}", exc_info=True) return str(e) # Create the Gradio Blocks interface with gr.Blocks() as demo: gr.Markdown("# Flan-T5 Small Legal Assistant") gr.Markdown("Use this tool to correct raw HTR, summarize legal texts, or answer questions about legal cases (powered by Flan-T5 Small).") with gr.Row(): gr.HTML('''
''') # Tab 1: Correct HTR with gr.Tab("Correct HTR"): gr.Markdown("### Correct Raw HTR Text") raw_htr_input = gr.Textbox(lines=5, placeholder="Enter raw HTR text here...") corrected_output = gr.Textbox(lines=5, placeholder="Corrected HTR text") correct_button = gr.Button("Correct HTR") clear_button = gr.Button("Clear") correct_button.click(correct_htr, inputs=[raw_htr_input, gr.Slider(minimum=10, maximum=512, value=128, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")], outputs=corrected_output) clear_button.click(lambda: ("", ""), outputs=[raw_htr_input, corrected_output]) # Tab 2: Summarize Legal Text with gr.Tab("Summarize Legal Text"): gr.Markdown("### Summarize Legal Text") legal_text_input = gr.Textbox(lines=10, placeholder="Enter legal text to summarize...") summary_output = gr.Textbox(lines=5, placeholder="Summary of legal text") summarize_button = gr.Button("Summarize Text") clear_button = gr.Button("Clear") summarize_button.click(summarize_text, inputs=[legal_text_input, gr.Slider(minimum=10, maximum=512, value=256, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label="Temperature")], outputs=summary_output) clear_button.click(lambda: ("", ""), outputs=[legal_text_input, summary_output]) # Tab 3: Answer Legal Question with gr.Tab("Answer Legal Question"): gr.Markdown("### Answer a Question Based on Legal Text") legal_text_input_q = gr.Textbox(lines=10, placeholder="Enter legal text...") question_input = gr.Textbox(lines=2, placeholder="Enter your question...") answer_output = gr.Textbox(lines=5, placeholder="Answer to your question") answer_button = gr.Button("Get Answer") clear_button = gr.Button("Clear") answer_button.click(answer_question, inputs=[legal_text_input_q, question_input, gr.Slider(minimum=10, maximum=512, value=150, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Temperature")], outputs=answer_output) clear_button.click(lambda: ("", "", ""), outputs=[legal_text_input_q, question_input, answer_output]) # Launch the Gradio interface if __name__ == "__main__": demo.launch()