MarcoParola's picture
update key for hf token
b380276
raw
history blame
9.17 kB
import gradio as gr
import yaml
import random
import os
import json
import time
from pathlib import Path
from huggingface_hub import CommitScheduler, HfApi
from src.utils import load_words, load_image_and_saliency, load_example_images
from src.style import css
from src.user import UserID
from datetime import datetime
from pathlib import Path
from uuid import uuid4
import json
from huggingface_hub import CommitScheduler, HfApi
def main():
config = yaml.safe_load(open("config/config.yaml"))
words = ['grad-cam', 'lime', 'sidu', 'rise']
options = ['-', '1', '2', '3', '4']
class_names = config['dataset'][config['dataset']['name']]['class_names']
data_dir = os.path.join(config['dataset']['path'], config['dataset']['name'])
with gr.Blocks(theme=gr.themes.Glass(), css=css) as demo:
# Main App Components
title = gr.Markdown("# Saliency evaluation - experiment 1")
user_state = gr.State(0)
#user_id = gr.State(load_global_variable())
answers = gr.State([])
with gr.Row():
target_img_label = gr.Markdown(f"Target image: **{class_names[user_state.value]}**")
gr.Markdown("Grad-cam")
gr.Markdown("Lime")
gr.Markdown("Sidu")
gr.Markdown("Rise")
with gr.Row():
count = user_state if isinstance(user_state, int) else user_state.value
images = load_image_and_saliency(count, data_dir)
target_img = gr.Image(images[0], elem_classes="main-image")
saliency_gradcam = gr.Image(images[1], elem_classes="main-image")
saliency_lime = gr.Image(images[2], elem_classes="main-image")
saliency_sidu = gr.Image(images[3], elem_classes="main-image")
saliency_rise = gr.Image(images[4], elem_classes="main-image")
with gr.Row():
dropdown1 = gr.Dropdown(choices=options, label="grad-cam")
dropdown2 = gr.Dropdown(choices=options, label="lime")
dropdown3 = gr.Dropdown(choices=options, label="sidu")
dropdown4 = gr.Dropdown(choices=options, label="rise")
gr.Markdown("### Image examples of the same class")
with gr.Row():
count = user_state if isinstance(user_state, int) else user_state.value
images = load_example_images(count, data_dir)
img1 = gr.Image(images[0])
img2 = gr.Image(images[1])
img3 = gr.Image(images[2])
img4 = gr.Image(images[3])
img5 = gr.Image(images[4])
img6 = gr.Image(images[5])
img7 = gr.Image(images[6])
img8 = gr.Image(images[7])
img9 = gr.Image(images[8])
img10 = gr.Image(images[9])
img11 = gr.Image(images[10])
img12 = gr.Image(images[11])
img13 = gr.Image(images[12])
img14 = gr.Image(images[13])
img15 = gr.Image(images[14])
img16 = gr.Image(images[15])
submit_button = gr.Button("Submit")
finish_button = gr.Button("Finish", visible=False)
def update_images(dropdown1, dropdown2, dropdown3, dropdown4, user_state):
count = user_state if isinstance(user_state, int) else user_state.value
if count < config['dataset'][config['dataset']['name']]['n_classes']:
images = load_image_and_saliency(count, data_dir)
target_img = gr.Image(images[0], elem_classes="main-image")
saliency_gradcam = gr.Image(images[1], elem_classes="main-image")
saliency_lime = gr.Image(images[2], elem_classes="main-image")
saliency_sidu = gr.Image(images[3], elem_classes="main-image")
saliency_rise = gr.Image(images[4], elem_classes="main-image")
# image examples
images = load_example_images(count, data_dir)
img1 = gr.Image(images[0])
img2 = gr.Image(images[1])
img3 = gr.Image(images[2])
img4 = gr.Image(images[3])
img5 = gr.Image(images[4])
img6 = gr.Image(images[5])
img7 = gr.Image(images[6])
img8 = gr.Image(images[7])
img9 = gr.Image(images[8])
img10 = gr.Image(images[9])
img11 = gr.Image(images[10])
img12 = gr.Image(images[11])
img13 = gr.Image(images[12])
img14 = gr.Image(images[13])
img15 = gr.Image(images[14])
img16 = gr.Image(images[15])
return target_img, saliency_gradcam, saliency_lime, saliency_rise, saliency_sidu, img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16
else:
return target_img, saliency_gradcam, saliency_lime, saliency_rise, saliency_sidu, img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16
def update_state(state):
count = state if isinstance(state, int) else state.value
return gr.State(count + 1)
def update_img_label(state):
count = state if isinstance(state, int) else state.value
return f"### Target image: {class_names[count]}"
def update_buttons(state):
count = state if isinstance(state, int) else state.value
max_images = config['dataset'][config['dataset']['name']]['n_classes']
finish_button = gr.Button("Finish", visible=(count == max_images-1))
submit_button = gr.Button("Submit", visible=(count != max_images-1))
return submit_button, finish_button
def update_dropdowns():
dp1 = gr.Dropdown(choices=options, value=options[0], label="grad-cam")
dp2 = gr.Dropdown(choices=options, value=options[0], label="lime")
dp3 = gr.Dropdown(choices=options, value=options[0], label="sidu")
dp4 = gr.Dropdown(choices=options, value=options[0], label="rise")
return dp1, dp2, dp3, dp4
def redirect():
pass
def save_results(answers):
api = HfApi()
api_token = os.getenv("HUGGINGFACE_TOKEN")
if not api_token:
raise ValueError("Hugging Face API token not found. Please set the HF_API_TOKEN environment variable.")
api.set_access_token(api_token)
json_file_results = config['results']['exp1_dir'] # 'exp1'
JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"
scheduler = CommitScheduler(
repo_id="example-space-to-dataset-json",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="data"
)
info_to_push = {
"user_id": time.time(),
"answer": {i: answer for i, answer in enumerate(answers)}
}
# Save the results into huggingface hub
with scheduler.lock:
with JSON_DATASET_PATH.open("a") as f:
json.dump({
"user_id": info_to_push["user_id"],
"answers": info_to_push["answer"],
"datetime": datetime.now().isoformat()
}, f)
f.write("\n")
scheduler.push_to_hub()
def add_answer(dropdown1,dropdown2,dropdown3,dropdown4, answers):
rank = [dropdown1,dropdown2,dropdown3,dropdown4]
answers.append(rank)
return answers
submit_button.click(
update_state,
inputs=user_state,
outputs=user_state
).then(
add_answer,
inputs=[dropdown1, dropdown2, dropdown3, dropdown4, answers],
outputs=answers
).then(
update_img_label,
inputs=user_state,
outputs=target_img_label
).then(
update_buttons,
inputs=user_state,
outputs={submit_button, finish_button}
).then(
update_images,
inputs=[dropdown1, dropdown2, dropdown3, dropdown4, user_state],
outputs={target_img, saliency_gradcam, saliency_lime, saliency_sidu, saliency_rise, img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16},
).then(
update_dropdowns,
outputs={dropdown1, dropdown2, dropdown3, dropdown4}
)
finish_button.click(
add_answer, inputs=[dropdown1, dropdown2, dropdown3, dropdown4, answers],outputs=answers
).then(
save_results, inputs=answers
).then(
redirect, js="window.location = 'https://marcoparola.github.io/saliency-evaluation-app/end'")
demo.load()
demo.launch()
if __name__ == "__main__":
main()