|
import gradio as gr |
|
from transformers import pipeline |
|
import torch |
|
|
|
def answer_question(question, answer_text): |
|
model_checkpoint = "MarcBrun/ixambert-finetuned-squad" |
|
question_answerer = pipeline("question-answering", model=model_checkpoint) |
|
|
|
answer = question_answerer(question=question, context=answer_text) |
|
|
|
return answer["answer"] |
|
|
|
iface = gr.Interface(fn=answer_question, inputs=[gr.inputs.Textbox(lines=1, placeholder="Question Here...", label="Question"),gr.inputs.Textbox(lines=5, placeholder="Context Here...", label="Context")], outputs=gr.outputs.Textbox(label="Answer")) |
|
iface.launch() |