File size: 13,433 Bytes
e1eaab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import os
import cv2
import numpy as np
import base64
from flask import Flask, render_template_string, request, redirect, flash
import roboflow
import torch
from collections import Counter

app = Flask(__name__)
app.secret_key = 'your_secret_key'  # Replace with a secure secret key

#########################################
# 1. Initialize the Models
#########################################

# --- Roboflow Box Detection Model ---
API_KEY = "wLjPoPYaLmrqCIOFA0RH"            # Replace with your actual API key
PROJECT_ID = "base-model-box-r4suo-8lkk1-6dbqh"      # Replace with your Roboflow project ID
VERSION_NUMBER = "2"  # Replace with your trained model version number

rf = roboflow.Roboflow(api_key=API_KEY)
workspace = rf.workspace()
project = workspace.project(PROJECT_ID)
version = project.version(VERSION_NUMBER)
box_model = version.model  # This model is trained for detecting boxes

# --- YOLOv5 Pretrained Model for Persons & Cars ---
# Using Ultralytics YOLOv5s (pretrained) from Torch Hub
yolov5_model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
# We'll filter YOLO detections to only include persons and cars.
YOLO_FILTER_CLASSES = {"person", "car"}

#########################################
# 2. Helper Functions
#########################################

def compute_iou(boxA, boxB):
    xA = max(boxA[0], boxB[0])
    yA = max(boxA[1], boxB[1])
    xB = min(boxA[2], boxB[2])
    yB = min(boxA[3], boxB[3])
    interWidth = max(0, xB - xA)
    interHeight = max(0, yB - yA)
    interArea = interWidth * interHeight
    boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
    boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
    if boxAArea + boxBArea - interArea == 0:
        return 0
    return interArea / float(boxAArea + boxBArea - interArea)

def custom_nms(preds, iou_threshold=0.3):
    preds = sorted(preds, key=lambda x: x["confidence"], reverse=True)
    filtered_preds = []
    for pred in preds:
        keep = True
        for kept in filtered_preds:
            if compute_iou(pred["box"], kept["box"]) > iou_threshold:
                keep = False
                break
        if keep:
            filtered_preds.append(pred)
    return filtered_preds

def process_image(image_path):
    """
    Process the uploaded image using both detection pipelines:
      (a) Box detection via Roboflow (with measurement using an ArUco marker).
      (b) YOLOv5 detection for persons and cars.
    Returns the annotated image and a list of detection info dictionaries.
    """
    image = cv2.imread(image_path)
    if image is None:
        return None, "Could not read the image."
    img_height, img_width = image.shape[:2]
    
    detection_info = []  # List to hold all detection results for display

    # --- (a) Roboflow Box Detection & Measurement ---
    results = box_model.predict(image_path, confidence=50, overlap=30).json()
    predictions = results.get("predictions", [])
    processed_preds = []
    for prediction in predictions:
        x, y, width, height = prediction["x"], prediction["y"], prediction["width"], prediction["height"]
        x1 = int(round(x - width / 2))
        y1 = int(round(y - height / 2))
        x2 = int(round(x + width / 2))
        y2 = int(round(y + height / 2))
        # Clamp coordinates to image dimensions
        x1 = max(0, min(x1, img_width - 1))
        y1 = max(0, min(y1, img_height - 1))
        x2 = max(0, min(x2, img_width - 1))
        y2 = max(0, min(y2, img_height - 1))
        processed_preds.append({
            "box": (x1, y1, x2, y2),
            "class": prediction["class"],
            "confidence": prediction["confidence"]
        })
    box_detections = custom_nms(processed_preds, iou_threshold=0.3)
    
    # Detect ArUco marker for measurement (only applicable for boxes)
    marker_real_width_cm = 10.0  # The marker is 10cm x 10cm
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    aruco_dict = cv2.aruco.getPredefinedDictionary(cv2.aruco.DICT_6X6_250)
    aruco_params = cv2.aruco.DetectorParameters()
    corners, ids, _ = cv2.aruco.detectMarkers(gray, aruco_dict, parameters=aruco_params)
    if ids is not None and len(corners) > 0:
        marker_corners = corners[0].reshape((4, 2))
        cv2.aruco.drawDetectedMarkers(image, corners, ids)
        marker_width_pixels = np.linalg.norm(marker_corners[0] - marker_corners[1])
        marker_height_pixels = np.linalg.norm(marker_corners[1] - marker_corners[2])
        marker_pixel_size = (marker_width_pixels + marker_height_pixels) / 2.0
        conversion_factor = marker_real_width_cm / marker_pixel_size
    else:
        conversion_factor = None

    # Draw box detections and record measurement info (only for boxes)
    for pred in box_detections:
        x1, y1, x2, y2 = pred["box"]
        label = pred["class"]
        confidence = pred["confidence"]
        cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
        if conversion_factor is not None:
            box_width_pixels = x2 - x1
            box_height_pixels = y2 - y1
            box_width_cm = box_width_pixels * conversion_factor
            box_height_cm = box_height_pixels * conversion_factor
            size_text = f"{box_width_cm:.1f}x{box_height_cm:.1f} cm"
            detection_info.append({
                "class": label,
                "confidence": f"{confidence:.2f}",
                "width_cm": f"{box_width_cm:.1f}",
                "height_cm": f"{box_height_cm:.1f}"
            })
        else:
            size_text = ""
            detection_info.append({
                "class": label,
                "confidence": f"{confidence:.2f}",
                "width_cm": "N/A",
                "height_cm": "N/A"
            })
        text = f"{label} ({confidence:.2f}) {size_text}"
        (text_width, text_height), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
        cv2.rectangle(image, (x1, y1 - text_height - baseline - 5), (x1 + text_width, y1 - 5), (0, 255, 0), -1)
        cv2.putText(image, text, (x1, y1 - 5 - baseline), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
    
    # --- (b) YOLOv5 for Persons & Cars ---
    # Convert image to RGB for YOLO (it expects RGB)
    img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    yolo_results = yolov5_model(img_rgb)
    df = yolo_results.pandas().xyxy[0]
    for _, row in df.iterrows():
        if row['name'] in YOLO_FILTER_CLASSES:
            xmin = int(row['xmin'])
            ymin = int(row['ymin'])
            xmax = int(row['xmax'])
            ymax = int(row['ymax'])
            conf = row['confidence']
            label = row['name']
            cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (255, 0, 0), 2)
            text = f"{label} ({conf:.2f})"
            (text_width, text_height), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
            cv2.rectangle(image, (xmin, ymin - text_height - baseline - 5), (xmin + text_width, ymin - 5), (255, 0, 0), -1)
            cv2.putText(image, text, (xmin, ymin - 5 - baseline), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
            detection_info.append({
                "class": label,
                "confidence": f"{conf:.2f}",
                "width_cm": "N/A",
                "height_cm": "N/A"
            })
    
    # --- Build Top Summary Text ---
    detection_counts = Counter(det["class"] for det in detection_info)
    if detection_counts:
        top_text = ", ".join(f"{cls}: {count}" for cls, count in detection_counts.items())
        (info_width, info_height), info_baseline = cv2.getTextSize(top_text, cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
        cv2.rectangle(image, (5, 5), (5 + info_width, 5 + info_height + info_baseline), (0, 255, 0), -1)
        cv2.putText(image, top_text, (5, 5 + info_height), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
    
    return image, detection_info

#########################################
# 3. Flask Routes
#########################################

@app.route('/', methods=['GET', 'POST'])
def index():
    image_data = None
    detection_info = None
    if request.method == 'POST':
        if 'file' not in request.files:
            flash('No file part')
            return redirect(request.url)
        file = request.files['file']
        if file.filename == '':
            flash('No selected file')
            return redirect(request.url)
        upload_path = "uploaded.jpg"
        file.save(upload_path)
        processed_image, detection_info = process_image(upload_path)
        if processed_image is None:
            flash("Error processing image.")
        else:
            retval, buffer = cv2.imencode('.jpg', processed_image)
            image_data = base64.b64encode(buffer).decode('utf-8')
        os.remove(upload_path)
    return render_template_string('''
    <!doctype html>
    <html>
      <head>
        <title>Multi-Detection & Measurement</title>
        <!-- Bootstrap CSS -->
        <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css">
        <style>
          body {
            background-color: #f8f9fa;
            font-family: "Segoe UI", Tahoma, Geneva, Verdana, sans-serif;
          }
          .container {
            margin-top: 30px;
          }
          .header {
            text-align: center;
            margin-bottom: 30px;
          }
          .card {
            margin-bottom: 30px;
          }
          .result-img {
            width: 100%;
            border: 1px solid #ddd;
            padding: 5px;
          }
          .table-responsive {
            margin-top: 20px;
          }
          .footer {
            text-align: center;
            font-size: 0.9em;
            color: #777;
            margin-top: 30px;
          }
        </style>
      </head>
      <body>
        <div class="container">
          <h1 class="header">Multi-Detection & Measurement</h1>
          <!-- Upload Form -->
          <div class="card">
            <div class="card-body">
              <form method="post" enctype="multipart/form-data">
                <div class="form-group">
                  <label for="file">Choose an image to upload:</label>
                  <input type="file" class="form-control-file" name="file" accept="image/*" id="file">
                </div>
                <button type="submit" class="btn btn-primary">Upload</button>
              </form>
              {% with messages = get_flashed_messages() %}
                {% if messages %}
                  <div class="alert alert-danger mt-3">
                    <ul>
                      {% for message in messages %}
                        <li>{{ message }}</li>
                      {% endfor %}
                    </ul>
                  </div>
                {% endif %}
              {% endwith %}
            </div>
          </div>
          {% if image_data or detection_info %}
          <div class="row">
            <div class="col-md-8">
              <div class="card">
                <div class="card-header">
                  Processed Image
                </div>
                <div class="card-body">
                  <img src="data:image/jpeg;base64,{{ image_data }}" alt="Processed Image" class="result-img">
                </div>
              </div>
            </div>
            <div class="col-md-4">
              <div class="card">
                <div class="card-header">
                  Detection Results
                </div>
                <div class="card-body">
                  <p>Total Results: <strong>{{ detection_info|length }}</strong></p>
                  <div class="table-responsive">
                    <table class="table table-striped table-bordered">
                      <thead class="thead-dark">
                        <tr>
                          <th>#</th>
                          <th>Class</th>
                          <th>Confidence</th>
                          <th>Width (cm)</th>
                          <th>Height (cm)</th>
                        </tr>
                      </thead>
                      <tbody>
                        {% for det in detection_info %}
                        <tr>
                          <td>{{ loop.index }}</td>
                          <td>{{ det.class }}</td>
                          <td>{{ det.confidence }}</td>
                          <td>{{ det.width_cm }}</td>
                          <td>{{ det.height_cm }}</td>
                        </tr>
                        {% endfor %}
                      </tbody>
                    </table>
                  </div>
                </div>
              </div>
            </div>
          </div>
          {% endif %}
          <div class="footer">
            <p>&copy; 2023 Multi-Detection App. All rights reserved.</p>
          </div>
        </div>
        <!-- Bootstrap JS and dependencies -->
        <script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"></script>
        <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/umd/popper.min.js"></script>
        <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.5.2/js/bootstrap.min.js"></script>
      </body>
    </html>
    ''', image_data=image_data, detection_info=detection_info)

#########################################
# Run the App
#########################################

if __name__ == '__main__':
    app.run()