Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled20.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1XZbCNfIzuxHNNECK_uGluXC65NH9yulc
|
8 |
+
"""
|
9 |
+
|
10 |
+
def greet(name):
|
11 |
+
return "Hello " + name + "!"
|
12 |
+
|
13 |
+
greet("World")
|
14 |
+
|
15 |
+
|
16 |
+
import gradio
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
import pandas as pd
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
|
24 |
+
from sklearn.decomposition import PCA
|
25 |
+
from sklearn.preprocessing import StandardScaler
|
26 |
+
from sklearn.pipeline import Pipeline
|
27 |
+
|
28 |
+
import multiprocessing as mp
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
#catboost
|
33 |
+
from catboost import Pool, CatBoostRegressor
|
34 |
+
|
35 |
+
modelos_cargados = []
|
36 |
+
for i in range(3):
|
37 |
+
model = CatBoostRegressor()
|
38 |
+
model.load_model(f'./model_{i}.cbm')
|
39 |
+
modelos_cargados.append(model)
|
40 |
+
|
41 |
+
def load_npz_file(filepath,
|
42 |
+
masked = True,
|
43 |
+
pad_mask = True):
|
44 |
+
'''load in numpy zipped files. Use masked =True to mask masked values (pad with 0's)'''
|
45 |
+
with np.load(filepath) as npz:
|
46 |
+
arr = np.ma.MaskedArray(**npz)
|
47 |
+
|
48 |
+
|
49 |
+
if masked == True:
|
50 |
+
if pad_mask : # pad masked pixels with 0's to preserve shape
|
51 |
+
mask = arr.mask
|
52 |
+
return np.where(mask==True,0,arr.data)
|
53 |
+
|
54 |
+
return arr
|
55 |
+
|
56 |
+
|
57 |
+
return arr.data
|
58 |
+
|
59 |
+
|
60 |
+
def load_and_reshape(filepath):
|
61 |
+
'''load and reshape array'''
|
62 |
+
|
63 |
+
|
64 |
+
#load array
|
65 |
+
arr = load_npz_file(filepath,
|
66 |
+
masked=False,
|
67 |
+
pad_mask=False)
|
68 |
+
|
69 |
+
depth,height,width = arr.shape
|
70 |
+
|
71 |
+
# reshape to depth last format
|
72 |
+
arr = arr.reshape((height,width,depth))
|
73 |
+
|
74 |
+
#scale values
|
75 |
+
# arr = arr / scaling_values
|
76 |
+
|
77 |
+
#resize
|
78 |
+
# arr = cv2.resize(arr,CFG.img_size)
|
79 |
+
|
80 |
+
return arr
|
81 |
+
|
82 |
+
|
83 |
+
def get_array_properties(arr):
|
84 |
+
'''get reduced properties for array with shape (h,w,channels==150)'''
|
85 |
+
|
86 |
+
#area of array
|
87 |
+
area_arr = arr[:,:,0].size
|
88 |
+
|
89 |
+
|
90 |
+
#max min range
|
91 |
+
arr_max = arr.max(axis=(0,1))
|
92 |
+
arr_range = arr_max - arr.min(axis=(0,1))
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
#central tendencies
|
97 |
+
mean_arr = arr.mean(axis=(0,1))
|
98 |
+
std_arr = arr.std(axis=(0,1))
|
99 |
+
|
100 |
+
median_arr = np.median(arr,axis=(0,1))
|
101 |
+
|
102 |
+
#first 25 %
|
103 |
+
q1 = np.percentile(a=arr,q=25,axis=(0,1))
|
104 |
+
#last 25 %
|
105 |
+
q3 = np.percentile(a=arr,q=75,axis=(0,1))
|
106 |
+
|
107 |
+
|
108 |
+
#iqr
|
109 |
+
iqr = q3 - q1
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
#first 10
|
114 |
+
d1 = np.percentile(a=arr,q=10,axis=(0,1))
|
115 |
+
|
116 |
+
|
117 |
+
#last 10
|
118 |
+
d10 = np.percentile(a=arr,q=90,axis=(0,1))
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
return np.array((area_arr,*mean_arr,*std_arr,*median_arr,*q1,*q3,*arr_max,*arr_range,*d1,*d10,*iqr))
|
124 |
+
|
125 |
+
|
126 |
+
def get_agg_properties(filepath):
|
127 |
+
arr = load_and_reshape(filepath)
|
128 |
+
|
129 |
+
# properties of each band(range of each band)
|
130 |
+
|
131 |
+
properties = get_array_properties(arr)
|
132 |
+
|
133 |
+
|
134 |
+
return properties
|
135 |
+
|
136 |
+
array_cols = ['array_area',
|
137 |
+
*[f'mean_{i}' for i in range(1,151)],
|
138 |
+
*[f'std_{i}' for i in range(1,151)],
|
139 |
+
*[f'med_{i}' for i in range(1,151)],
|
140 |
+
*[f'q1_{i}' for i in range(1,151)],
|
141 |
+
*[f'q3_{i}' for i in range(1,151)],
|
142 |
+
*[f'max_{i}' for i in range(1,151)],
|
143 |
+
*[f'range_{i}' for i in range(1,151)],
|
144 |
+
*[f'D1_{i}' for i in range(1,151)],
|
145 |
+
*[f'D10_{i}' for i in range(1,151)],
|
146 |
+
*[f'IQR_{i}' for i in range(1,151)]]
|
147 |
+
|
148 |
+
print(array_cols)
|
149 |
+
|
150 |
+
def pca_on_band(df, band_num, n_components=2):
|
151 |
+
"""
|
152 |
+
get pca features for a particular band
|
153 |
+
"""
|
154 |
+
pca_pipe = Pipeline(steps=[('standard_scaler', StandardScaler()),
|
155 |
+
('pca', PCA(n_components=min(n_components, df.shape[0])))])
|
156 |
+
|
157 |
+
band_cols = [col for col in df.columns if str(band_num) in col]
|
158 |
+
# Si solo hay una muestra, no realizar PCA y en su lugar devolver la muestra despu茅s del escalado
|
159 |
+
if df.shape[0] == 1:
|
160 |
+
scaler = StandardScaler()
|
161 |
+
scaled_features = scaler.fit_transform(df[band_cols])
|
162 |
+
return pd.DataFrame(scaled_features,
|
163 |
+
columns=[f'B{band_num}_PC{i+1}' for i in range(scaled_features.shape[1])])
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
pca_pipe.fit(df[band_cols])
|
168 |
+
features = pca_pipe.transform(df[band_cols])
|
169 |
+
|
170 |
+
return pd.DataFrame(features,
|
171 |
+
columns=[f'B{band_num}_PC{i+1}' for i in range(n_components)])
|
172 |
+
|
173 |
+
|
174 |
+
def get_pca_dataset(df):
|
175 |
+
|
176 |
+
all_df = []
|
177 |
+
|
178 |
+
for band in range(1,151):
|
179 |
+
band_pca = pca_on_band(df,band)
|
180 |
+
|
181 |
+
all_df.append(band_pca)
|
182 |
+
|
183 |
+
|
184 |
+
return pd.concat(objs=all_df, axis=1, join='outer', ignore_index=False)
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
derived_cols = ['array_area',*[f'q1_{i}' for i in range(1,151)],*[f'q3_{i}' for i in range(1,151)]]
|
190 |
+
|
191 |
+
def predecir_desde_archivo_npz(ruta_archivo_npz, modelos, array_cols, derived_cols):
|
192 |
+
"""
|
193 |
+
Carga un archivo .npz, procesa los datos y utiliza los modelos para predecir los valores.
|
194 |
+
|
195 |
+
:param ruta_archivo_npz: String con la ruta al archivo .npz.
|
196 |
+
:param modelos: Lista de modelos entrenados para hacer las predicciones.
|
197 |
+
:param array_cols: Columnas esperadas despu茅s de obtener las propiedades agregadas.
|
198 |
+
:param derived_cols: Columnas derivadas que se usan junto con PCA para la entrada del modelo.
|
199 |
+
:return: Predicci贸n para el archivo dado.
|
200 |
+
"""
|
201 |
+
# Cargar y procesar los datos del archivo .npz
|
202 |
+
propiedades_agregadas = get_agg_properties(ruta_archivo_npz)
|
203 |
+
datos_df = pd.DataFrame([propiedades_agregadas], columns=array_cols)
|
204 |
+
|
205 |
+
print(datos_df)
|
206 |
+
|
207 |
+
# Aplicar PCA a los datos procesados
|
208 |
+
pca_datos = get_pca_dataset(datos_df)
|
209 |
+
|
210 |
+
# Combinar con las columnas derivadas
|
211 |
+
datos_finales = pca_datos.merge(datos_df[derived_cols], left_index=True, right_index=True)
|
212 |
+
|
213 |
+
# Realizar predicciones con los modelos
|
214 |
+
predicciones = [modelo.predict(datos_finales) for modelo in modelos]
|
215 |
+
predicciones = np.array(predicciones).reshape(len(modelos), -1)
|
216 |
+
|
217 |
+
# Calcular la mediana de las predicciones
|
218 |
+
mediana_predicciones = np.median(predicciones, axis=0)
|
219 |
+
return mediana_predicciones
|
220 |
+
|
221 |
+
# Aqu铆 asumimos que `array_cols` y `derived_cols` ya est谩n definidos en tu entorno como se ve en tu c贸digo.
|
222 |
+
# Tambi茅n asumimos que los modelos ya est谩n entrenados y contenidos en la lista `modelos`.
|
223 |
+
|
224 |
+
ruta_archivo_npz = "./1.npz" # Sustituir con la ruta real al archivo .npz
|
225 |
+
prediccion = predecir_desde_archivo_npz(ruta_archivo_npz, modelos_cargados, array_cols, derived_cols)
|
226 |
+
if len(prediccion) == 4:
|
227 |
+
fosforo_predicho, potasio_predicho, magnesio_predicho, pH_predicho = prediccion
|
228 |
+
print(f"F贸sforo Predicho: {fosforo_predicho}")
|
229 |
+
print(f"Potasio Predicho: {potasio_predicho}")
|
230 |
+
print(f"Magnesio Predicho: {magnesio_predicho}")
|
231 |
+
print(f"pH Predicho: {pH_predicho}")
|
232 |
+
else:
|
233 |
+
print("La predicci贸n no contiene el n煤mero esperado de componentes.")
|
234 |
+
|
235 |
+
import gradio as gr
|
236 |
+
|
237 |
+
# Aseg煤rate de que las funciones de predicci贸n y carga de modelos est茅n definidas aqu铆 o est茅n siendo importadas correctamente.
|
238 |
+
|
239 |
+
# Supongamos que la funci贸n 'predecir_desde_archivo_npz' est谩 definida correctamente y funciona.
|
240 |
+
# Tambi茅n asumimos que 'modelos_cargados' es una lista de modelos CatBoost ya cargados.
|
241 |
+
|
242 |
+
def predecir_desde_archivo_npz_interface(archivo):
|
243 |
+
# Gradio pasa el archivo cargado como un objeto temporal, que puedes leer directamente
|
244 |
+
datos = archivo
|
245 |
+
# Asumimos que tus funciones de procesamiento esperan recibir un array numpy y devuelven las predicciones como un array
|
246 |
+
predicciones = predecir_desde_archivo_npz(datos, modelos_cargados, array_cols, derived_cols)
|
247 |
+
return {
|
248 |
+
'F贸sforo (P)': float(predicciones[0]),
|
249 |
+
'Potasio (K)': float(predicciones[1]),
|
250 |
+
'Magnesio (Mg)': float(predicciones[2]),
|
251 |
+
'pH': float(predicciones[3])
|
252 |
+
}
|
253 |
+
|
254 |
+
demo = gr.Interface(
|
255 |
+
fn=predecir_desde_archivo_npz_interface,
|
256 |
+
inputs=gr.File(label="Sube tu archivo NPZ",file_types = [".npz"]
|
257 |
+
|
258 |
+
|
259 |
+
),
|
260 |
+
outputs=gr.JSON(label="Predicciones", )
|
261 |
+
)
|
262 |
+
demo.launch(
|
263 |
+
share=True
|
264 |
+
)
|