from transformers import BitsAndBytesConfig, LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor import torch import numpy as np import av import spaces import gradio as gr import os quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 ) model_name = 'llava-hf/LLaVA-NeXT-Video-7B-DPO-hf' processor = LlavaNextVideoProcessor.from_pretrained(model_name) model = LlavaNextVideoForConditionalGeneration.from_pretrained( model_name, quantization_config=quantization_config, device_map='auto' ) def read_video_pyav(container, indices): ''' Decode the video with PyAV decoder. Args: container (av.container.input.InputContainer): PyAV container. indices (List[int]): List of frame indices to decode. Returns: np.ndarray: np array of decoded frames of shape (num_frames, height, width, 3). ''' frames = [] container.seek(0) start_index = indices[0] end_index = indices[-1] for i, frame in enumerate(container.decode(video=0)): if i > end_index: break if i >= start_index and i in indices: frames.append(frame) return np.stack([x.to_ndarray(format="rgb24") for x in frames]) @spaces.GPU def process_video(video_file, question_parts): # Open video and sample frames with av.open(video_file.name) as container: # Access file name from Gradio input total_frames = container.streams.video[0].frames indices = np.arange(0, total_frames, total_frames / 8).astype(int) video_clip = read_video_pyav(container, indices) # Combine question parts into a single question question = " ".join(question_parts) # Prepare conversation conversation = [ { "role": "user", "content": [ {"type": "text", "text": f"{question}"}, {"type": "video"}, ], }, ] prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) # Prepare inputs for the model input = processor([prompt], videos=[video_clip], padding=True, return_tensors="pt").to(model.device) # Generate output generate_kwargs = {"max_new_tokens": 500, "do_sample": False, "top_p": 0.9} output = model.generate(**input, **generate_kwargs) generated_text = processor.batch_decode(output, skip_special_tokens=True)[0] return generated_text.split("ASSISTANT: ", 1)[-1].strip() def process_videos(video_files, question): """Processes multiple videos and answers a single question for each.""" answers = [] for video_file in video_files: video_name = os.path.basename(video_file.name) answer = process_video(video_file, question) answers.append(f"**Video: {video_name}**\n{answer}\n") return "\n---\n".join(answers) # Define Gradio interface for multiple videos def gradio_interface(videos, indoors_outdoors, standing_sitting, hands_free, interacting_screen): question = "Is the subject in the video" if indoors_outdoors: question += "present indoors or outdoors? " if standing_sitting: question += "standing or sitting? " if hands_free: question += "hands free or not? " if interacting_screen: question += "interacting with any screen in the background?" answers = process_videos(videos, question) return answers iface = gr.Interface( fn=gradio_interface, inputs=[ gr.File(label="Upload Videos", file_count="multiple"), gr.Checkbox(label="Indoors or Outdoors", value=False), gr.Checkbox(label="Standing or Sitting", value=False), gr.Checkbox(label="Hands Free or Not", value=False), gr.Checkbox(label="Interacting with Screen", value=False), ], outputs=gr.Textbox(label="Generated Answers"), title="Video Question Answering", description="Upload multiple videos and select questions to get answers." ) if __name__ == "__main__": iface.launch(debug=True)