Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
@@ -2,65 +2,70 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
5 |
-
# 1) Load
|
6 |
-
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
8 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID)
|
9 |
|
10 |
-
# 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
model.to(device)
|
13 |
model.eval()
|
14 |
|
15 |
-
#
|
16 |
LANG_CODES = {
|
17 |
"French": "fr",
|
18 |
"Zarma": "yo"
|
19 |
}
|
20 |
|
21 |
-
def translate(text,
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
# tell the tokenizer which languages we're using
|
26 |
-
tokenizer.src_lang = src
|
27 |
-
tokenizer.tgt_lang = tgt
|
28 |
|
29 |
-
# tokenize & move
|
30 |
inputs = tokenizer(text, return_tensors="pt", padding=True).to(device)
|
31 |
|
32 |
-
# generate
|
33 |
with torch.no_grad():
|
34 |
outputs = model.generate(
|
35 |
**inputs,
|
36 |
-
forced_bos_token_id=tokenizer.lang_code_to_id[
|
37 |
-
num_beams=
|
38 |
-
num_return_sequences=
|
39 |
-
length_penalty=1.0,
|
40 |
early_stopping=True
|
41 |
)
|
42 |
|
43 |
-
# decode & join
|
44 |
translations = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
45 |
return "\n\n".join(translations)
|
46 |
|
47 |
-
|
48 |
-
# 4) Gradio interface
|
49 |
-
markdown = r"""
|
50 |
-
# FERIJI Translator: French ⇄ Zarma
|
51 |
-
*Beta version – academic & research use only.*
|
52 |
-
"""
|
53 |
-
|
54 |
with gr.Blocks() as app:
|
55 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
with gr.Row():
|
58 |
inp = gr.Textbox(lines=7, label="Français / French")
|
59 |
-
|
|
|
|
|
|
|
60 |
out = gr.Textbox(lines=7, label="Zarma")
|
61 |
|
62 |
btn = gr.Button("Traduire")
|
63 |
-
btn.click(translate, inputs=[inp,
|
64 |
|
65 |
-
# On HF Spaces you
|
66 |
app.launch()
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
5 |
+
# 1) Load the base M2M100 tokenizer (avoids the “non-consecutive added token” error)
|
6 |
+
BASE_MODEL = "facebook/m2m100_418M"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
|
|
8 |
|
9 |
+
# 2) Load your fine-tuned French⇄Zarma model
|
10 |
+
FINETUNED_MODEL = "Mamadou2727/Feriji_model"
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(FINETUNED_MODEL)
|
12 |
+
|
13 |
+
# 3) Ensure the model’s embedding matrix matches the tokenizer vocab size
|
14 |
+
model.resize_token_embeddings(len(tokenizer))
|
15 |
+
|
16 |
+
# 4) Move model to GPU if available
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
model.to(device)
|
19 |
model.eval()
|
20 |
|
21 |
+
# 5) Correct ISO 639-3 code for Zarma (“dje”)
|
22 |
LANG_CODES = {
|
23 |
"French": "fr",
|
24 |
"Zarma": "yo"
|
25 |
}
|
26 |
|
27 |
+
def translate(text: str, num_seqs: int):
|
28 |
+
# set source & target language codes
|
29 |
+
tokenizer.src_lang = LANG_CODES["French"]
|
30 |
+
tokenizer.tgt_lang = LANG_CODES["Zarma"]
|
|
|
|
|
|
|
31 |
|
32 |
+
# tokenize & move to device
|
33 |
inputs = tokenizer(text, return_tensors="pt", padding=True).to(device)
|
34 |
|
35 |
+
# generate translations
|
36 |
with torch.no_grad():
|
37 |
outputs = model.generate(
|
38 |
**inputs,
|
39 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[LANG_CODES["Zarma"]],
|
40 |
+
num_beams=num_seqs,
|
41 |
+
num_return_sequences=num_seqs,
|
42 |
+
length_penalty=1.0,
|
43 |
early_stopping=True
|
44 |
)
|
45 |
|
46 |
+
# decode & join multiple hypotheses
|
47 |
translations = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
48 |
return "\n\n".join(translations)
|
49 |
|
50 |
+
# 6) Build Gradio app
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
with gr.Blocks() as app:
|
52 |
+
gr.Markdown(
|
53 |
+
"""
|
54 |
+
# FERIJI Translator: French ⇄ Zarma
|
55 |
+
*Beta version – academic & research use only.*
|
56 |
+
"""
|
57 |
+
)
|
58 |
|
59 |
with gr.Row():
|
60 |
inp = gr.Textbox(lines=7, label="Français / French")
|
61 |
+
beams = gr.Slider(
|
62 |
+
label="Nombre de séquences retournées",
|
63 |
+
minimum=1, maximum=5, value=1, step=1
|
64 |
+
)
|
65 |
out = gr.Textbox(lines=7, label="Zarma")
|
66 |
|
67 |
btn = gr.Button("Traduire")
|
68 |
+
btn.click(fn=translate, inputs=[inp, beams], outputs=out, api_name="predict")
|
69 |
|
70 |
+
# On HF Spaces you don’t need share=True
|
71 |
app.launch()
|