dependencies = ['torch', 'diffusers'] import torch from diffusers import UNet2DConditionModel # mgd is the name of entrypoint def mgd(dataset: str, pretrained: bool = True, **kwargs) -> UNet2DConditionModel: """ # This docstring shows up in hub.help() MGD model pretrained (bool): kwargs, load pretrained weights into the model """ config = UNet2DConditionModel.load_config("runwayml/stable-diffusion-inpainting", subfolder="unet") config['in_channels'] = 28 unet = UNet2DConditionModel.from_config(config) if pretrained: checkpoint = f"https://github.com/aimagelab/multimodal-garment-designer/releases/download/weights/{dataset}.pth" unet.load_state_dict(torch.hub.load_state_dict_from_url(checkpoint, progress=True)) return unet