import argparse import os from pathlib import Path import logging import re_matching logging.getLogger("numba").setLevel(logging.WARNING) logging.getLogger("markdown_it").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("matplotlib").setLevel(logging.WARNING) logging.basicConfig( level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" ) logger = logging.getLogger(__name__) import shutil from scipy.io.wavfile import write import librosa import numpy as np import torch import torch.nn as nn from torch.utils.data import Dataset from torch.utils.data import DataLoader, Dataset from tqdm import tqdm from tools.sentence import extrac, is_japanese, is_chinese, seconds_to_ass_time, extract_text_from_file, remove_annotations,extract_and_convert import gradio as gr import utils from config import config import torch import commons from text import cleaned_text_to_sequence, get_bert from text.cleaner import clean_text import utils from models import SynthesizerTrn from text.symbols import symbols import sys import re from tools.translate import translate from fugashi import Tagger import jaconv import unidic import subprocess def download_unidic(): try: Tagger() print("Tagger launch successfully.") except Exception as e: print("UNIDIC dictionary not found, downloading...") subprocess.run([sys.executable, "-m", "unidic", "download"]) print("Download completed.") def kanji_to_hiragana(text): tagger = Tagger() output = "" # 更新正则表达式以更准确地区分文本和标点符号 segments = re.findall(r'[一-龥ぁ-んァ-ン\w]+|[^\一-龥ぁ-んァ-ン\w\s]', text, re.UNICODE) for segment in segments: if re.match(r'[一-龥ぁ-んァ-ン\w]+', segment): # 如果是单词或汉字,转换为平假名 for word in tagger(segment): kana = word.feature.kana or word.surface hiragana = jaconv.kata2hira(kana) # 将片假名转换为平假名 output += hiragana else: # 如果是标点符号,保持不变 output += segment return output net_g = None device = ( "cuda:0" if torch.cuda.is_available() else ( "mps" if sys.platform == "darwin" and torch.backends.mps.is_available() else "cpu" ) ) #device = "cpu" BandList = { "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"], "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"], "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"], "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"], "Roselia":["友希那","紗夜","リサ","燐子","あこ"], "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"], "Morfonica":["ましろ","瑠唯","つくし","七深","透子"], "MyGo":["燈","愛音","そよ","立希","楽奈"], "AveMujica":["祥子","睦","海鈴","にゃむ","初華"], } def get_net_g(model_path: str, device: str, hps): net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model, ).to(device) _ = net_g.eval() _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) return net_g def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): style_text = None if style_text == "" else style_text norm_text, phone, tone, word2ph = clean_text(text, language_str) phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) if hps.data.add_blank: phone = commons.intersperse(phone, 0) tone = commons.intersperse(tone, 0) language = commons.intersperse(language, 0) for i in range(len(word2ph)): word2ph[i] = word2ph[i] * 2 word2ph[0] += 1 bert_ori = get_bert( norm_text, word2ph, language_str, device, style_text, style_weight ) del word2ph assert bert_ori.shape[-1] == len(phone), phone if language_str == "ZH": bert = bert_ori ja_bert = torch.randn(1024, len(phone)) en_bert = torch.randn(1024, len(phone)) elif language_str == "JP": bert = torch.randn(1024, len(phone)) ja_bert = bert_ori en_bert = torch.randn(1024, len(phone)) elif language_str == "EN": bert = torch.randn(1024, len(phone)) ja_bert = torch.randn(1024, len(phone)) en_bert = bert_ori else: raise ValueError("language_str should be ZH, JP or EN") assert bert.shape[-1] == len( phone ), f"Bert seq len {bert.shape[-1]} != {len(phone)}" phone = torch.LongTensor(phone) tone = torch.LongTensor(tone) language = torch.LongTensor(language) return bert, ja_bert, en_bert, phone, tone, language def infer( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, style_text=None, style_weight=0.7, language = "Auto", fugashi = True ): if fugashi: text = kanji_to_hiragana(text) if is_japanese(text) else text if language == "Auto": language= 'JP' if is_japanese(text) else 'ZH' bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( text, language, hps, device, style_text=style_text, style_weight=style_weight, ) with torch.no_grad(): x_tst = phones.to(device).unsqueeze(0) tones = tones.to(device).unsqueeze(0) lang_ids = lang_ids.to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) ja_bert = ja_bert.to(device).unsqueeze(0) en_bert = en_bert.to(device).unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) # emo = emo.to(device).unsqueeze(0) del phones speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) audio = ( net_g.infer( x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, ja_bert, en_bert, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, )[0][0, 0] .data.cpu() .float() .numpy() ) del ( x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, ) # , emo if torch.cuda.is_available(): torch.cuda.empty_cache() return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio)) def is_japanese(string): for ch in string: if ord(ch) > 0x3040 and ord(ch) < 0x30FF: return True return False def loadmodel(model): _ = net_g.eval() _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True) return "success" def generate_audio_and_srt_for_group(group, outputPath, group_index, sampling_rate, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime,language_force,fugashi = True): audio_fin = [] ass_entries = [] start_time = 0 #speaker = random.choice(cara_list) ass_header = """[Script Info] ; 我没意见 Title: Audiobook ScriptType: v4.00+ WrapStyle: 0 PlayResX: 640 PlayResY: 360 ScaledBorderAndShadow: yes [V4+ Styles] Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1 [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text """ for sentence in group: try: FakeSpeaker = sentence.split("|")[0] print(FakeSpeaker) SpeakersList = re.split('\n', spealerList) if FakeSpeaker in list(hps.data.spk2id.keys()): speaker = FakeSpeaker for i in SpeakersList: if FakeSpeaker == i.split("|")[1]: speaker = i.split("|")[0] if sentence != '\n': text = (remove_annotations(sentence.split("|")[-1]).replace(" ","")+"。").replace(",。","。") audio = infer_simple( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, speaker, language_force, fugashi ) silence_frames = int(silenceTime * 44010) if is_chinese(sentence) else int(silenceTime * 44010) silence_data = np.zeros((silence_frames,), dtype=audio.dtype) audio_fin.append(audio) audio_fin.append(silence_data) duration = len(audio) / sampling_rate print(duration) end_time = start_time + duration + silenceTime ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":"))) start_time = end_time except: pass wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav') ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass') write(wav_filename, sampling_rate, np.concatenate(audio_fin)) with open(ass_filename, 'w', encoding='utf-8') as f: f.write(ass_header + '\n'.join(ass_entries)) return (hps.data.sampling_rate, np.concatenate(audio_fin)) def audiobook(inputFile, groupsize, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime,filepath,raw_text,language_force,fugashi): directory_path = filepath if torch.cuda.is_available() else "books" if os.path.exists(directory_path): shutil.rmtree(directory_path) os.makedirs(directory_path) if inputFile: text = extract_text_from_file(inputFile.name) else: text = raw_text if language_force == 'None': sentences = extrac(extract_and_convert(text)) else: sentences = extrac(text) GROUP_SIZE = groupsize for i in range(0, len(sentences), GROUP_SIZE): group = sentences[i:i+GROUP_SIZE] if spealerList == "": spealerList = "无" result = generate_audio_and_srt_for_group(group,directory_path, i//GROUP_SIZE + 1, 44100, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime,language_force,fugashi) if not torch.cuda.is_available(): return result return result def infer_simple( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language_force = "None", fugashi = True ): if language_force == "JP": text = translate(text,"jp") if language_force == "ZH": text = translate(text,"zh") if fugashi: text = kanji_to_hiragana(text) if is_japanese(text) else text print(text) if is_chinese(text) or is_japanese(text): if len(text) > 1: language= 'JP' if is_japanese(text) else 'ZH' bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( text, language, hps, device, style_text="", style_weight=0, ) with torch.no_grad(): x_tst = phones.to(device).unsqueeze(0) tones = tones.to(device).unsqueeze(0) lang_ids = lang_ids.to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) ja_bert = ja_bert.to(device).unsqueeze(0) en_bert = en_bert.to(device).unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) # emo = emo.to(device).unsqueeze(0) del phones speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) audio = ( net_g.infer( x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, ja_bert, en_bert, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, )[0][0, 0] .data.cpu() .float() .numpy() ) del ( x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, ) # , emo if torch.cuda.is_available(): torch.cuda.empty_cache() return audio if __name__ == "__main__": download_unidic() languages = [ "Auto", "ZH", "JP"] modelPaths = [] for dirpath, dirnames, filenames in os.walk('Data/BangDream/models/'): for filename in filenames: modelPaths.append(os.path.join(dirpath, filename)) hps = utils.get_hparams_from_file('Data/BangDream/configs/config.json') net_g = get_net_g( model_path="Data/BangDream/models/G_1536000.pth", device=device, hps=hps ) speaker_ids = hps.data.spk2id speakers = list(speaker_ids.keys()) with gr.Blocks() as app: gr.Markdown(value=""" ([Bert-Vits2](https://github.com/Stardust-minus/Bert-VITS2) V2.3)少歌邦邦全员在线语音合成\n 镜像 [V2.2](https://huggingface.co/spaces/Mahiruoshi/MyGO_VIts-bert)\n [好玩的](http://love.soyorin.top/)\n 该界面的真实链接(国内可用): https://mahiruoshi-bangdream-bert-vits2.hf.space/\n API: https://mahiruoshi-bert-vits2-api.hf.space/ \n 调用方式: https://mahiruoshi-bert-vits2-api.hf.space/?text={{speakText}}&speaker=chosen_speaker\n 推荐搭配[Legado开源阅读](https://github.com/gedoor/legado)或[聊天bot](https://github.com/Paraworks/BangDreamAi)使用\n 二创请标注作者:B站@Mahiroshi: https://space.bilibili.com/19874615\n 训练数据集归属:BangDream及少歌手游,提取自BestDori,[数据集获取流程](https://nijigaku.top/2023/09/29/Bestbushiroad%E8%AE%A1%E5%88%92-vits-%E9%9F%B3%E9%A2%91%E6%8A%93%E5%8F%96%E5%8F%8A%E6%95%B0%E6%8D%AE%E9%9B%86%E5%AF%B9%E9%BD%90/)\n BangDream数据集下载[链接](https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/%E7%88%AC%E8%99%AB/SortPathUrl.txt)\n !!!注意:huggingface容器仅用作展示,建议在右上角更多选项中克隆本项目或Docker运行app.py/server.py,环境参考requirements.txt\n""") for band in BandList: with gr.TabItem(band): for name in BandList[band]: with gr.TabItem(name): with gr.Row(): with gr.Column(): with gr.Row(): gr.Markdown( '
' f'' '
' ) length_scale = gr.Slider( minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节" ) language = gr.Dropdown( choices=languages, value="Auto", label="语言" ) fugashi = gr.Checkbox(label="转化为片假名") with gr.Accordion(label="参数设定", open=True): sdp_ratio = gr.Slider( minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比" ) noise_scale = gr.Slider( minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节" ) noise_scale_w = gr.Slider( minimum=0.1, maximum=2, value=0.667, step=0.01, label="音素长度" ) speaker = gr.Dropdown( choices=speakers, value=name, label="说话人" ) with gr.Accordion(label="切换模型", open=False): modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value") btnMod = gr.Button("载入模型") statusa = gr.TextArea(label = "模型加载状态") btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa]) with gr.Column(): text = gr.TextArea( label="文本输入", info="输入纯日语或者中文", value="我是来结束这个乐队的。", ) style_text = gr.Textbox( label="情感辅助文本", info="语言保持跟主文本一致,文本可以参考训练集:https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/filelists/Mygo.list)", placeholder="使用辅助文本的语意来辅助生成对话(语言保持与主文本相同)\n\n" "**注意**:不要使用**指令式文本**(如:开心),要使用**带有强烈情感的文本**(如:我好快乐!!!)" ) style_weight = gr.Slider( minimum=0, maximum=1, value=0.7, step=0.1, label="Weight", info="主文本和辅助文本的bert混合比率,0表示仅主文本,1表示仅辅助文本", ) btn = gr.Button("点击生成", variant="primary") audio_output = gr.Audio(label="Output Audio") btntran = gr.Button("快速中翻日") translateResult = gr.TextArea(label="使用百度翻译",placeholder="从这里复制翻译后的文本") btntran.click(translate, inputs=[text], outputs = [translateResult]) btn.click( infer, inputs=[ text, sdp_ratio, noise_scale, noise_scale_w, length_scale, speaker, style_text, style_weight, language, fugashi ], outputs=[audio_output], ) with gr.TabItem('少歌在2.2版本'): gr.Markdown(value="""
'
""" ) with gr.Tab('拓展功能'): with gr.Row(): with gr.Column(): gr.Markdown( f"从 我的博客站点 查看自制galgame使用说明\n" ) inputFile = gr.UploadButton(label="txt文件输入") raw_text = gr.TextArea( label="文本输入", info="输入纯日语或者中文", value="筑紫|我是来结束这个乐队的。", ) language_force = gr.Dropdown( choices=[ "None", "ZH", "JP"], value="None", label="将文本翻译为目标语言" ) fugashi = gr.Checkbox(label="转化为片假名") groupSize = gr.Slider( minimum=10, maximum=1000 if torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大字数" ) silenceTime = gr.Slider( minimum=0, maximum=1, value=0.5, step=0.01, label="句子的间隔" ) filepath = gr.TextArea( label="本地合成时的音频存储文件夹(会清空文件夹)", value = "D:/audiobook/book1", ) spealerList = gr.TextArea( label="角色对应表,左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList}|{SeakerInUploadText}", value = "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子", ) speaker = gr.Dropdown( choices=speakers, value = "ましろ", label="选择默认说话人" ) with gr.Column(): sdp_ratio = gr.Slider( minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比" ) noise_scale = gr.Slider( minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节" ) noise_scale_w = gr.Slider( minimum=0.1, maximum=2, value=0.667, step=0.01, label="音素长度" ) length_scale = gr.Slider( minimum=0.1, maximum=2, value=1, step=0.01, label="生成长度" ) LastAudioOutput = gr.Audio(label="当使用cuda时才能在本地文件夹浏览全部文件") btn2 = gr.Button("点击生成", variant="primary") btn2.click( audiobook, inputs=[ inputFile, groupSize, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, spealerList, silenceTime, filepath, raw_text, language_force, fugashi ], outputs=[LastAudioOutput], ) print("推理页面已开启!") app.launch()