#!/usr/bin/env python import os from collections.abc import Iterator from threading import Thread import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # # 1) Custom Pastel Gradient CSS # CUSTOM_CSS = """ .gradio-container { background: linear-gradient(to right, #FFDEE9, #B5FFFC); } """ # # 2) Description: Add French greeting, plus any info # DESCRIPTION = """# Bonjour Dans le chat du consentement Mistral-7B Instruct Demo """ if not torch.cuda.is_available(): DESCRIPTION += ( "\n
Running on CPU - This is likely too large to run effectively.
" ) MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) # # 3) Load Mistral-7B Instruct (requires gating, GPU recommended) # if torch.cuda.is_available(): model_id = "mistralai/Mistral-7B-Instruct-v0.3" tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True # Might be needed for custom code ) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) def generate( message: str, chat_history: list[dict], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: """ This function handles streaming chat text as the model generates it. Uses Mistral's 'apply_chat_template' to handle chat-style prompting. """ conversation = [*chat_history, {"role": "user", "content": message}] input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning( f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens." ) input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer( tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) # Stream partial output as it's generated yield "".join(outputs) # # 4) Build the Chat Interface with extra sliders # demo = gr.ChatInterface( fn=generate, description=DESCRIPTION, css=CUSTOM_CSS, # Use our pastel gradient additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["Hello there! How are you doing?"], ["Can you explain briefly what the Python programming language is?"], ["Explain the plot of Cinderella in a sentence."], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], type="messages", ) if __name__ == "__main__": demo.queue(max_size=20).launch(share=True)