Spaces:
Build error
Build error
| import os | |
| from dotenv import find_dotenv, load_dotenv | |
| import streamlit as st | |
| from typing import Generator | |
| from groq import Groq | |
| # Cargar variables de entorno | |
| _ = load_dotenv(find_dotenv()) | |
| # Configurar la página de Streamlit | |
| st.set_page_config(page_icon="📃", layout="wide", page_title="Groq & LLaMA3.1 Chat Bot...") | |
| # Menú superior con fondo transparente | |
| st.markdown( | |
| """ | |
| <style> | |
| .menu-container { | |
| padding: 20px; | |
| background-color: transparent; /* Fondo transparente */ | |
| border-bottom: 1px solid #e1e1e1; | |
| } | |
| .menu-title { | |
| font-size: 24px; | |
| font-weight: bold; | |
| margin-bottom: 10px; | |
| } | |
| .menu-description { | |
| line-height: 1.5; | |
| } | |
| .menu-description a { | |
| color: #1f77b4; | |
| text-decoration: none; | |
| } | |
| .menu-description a:hover { | |
| text-decoration: underline; | |
| } | |
| </style> | |
| <div class="menu-container"> | |
| <p class="menu-title">Bot con I.A. para crear BENEFICIOS de productos.</p> | |
| <p class="menu-description"> | |
| Estos BENEFICIOS van en la descripcion LARGA de producto (En la parte de ARRIBA).<br><br> | |
| Si desea usar otro BOT de I.A. escoja:<br> | |
| <a href='https://magnetimpact-mc-bot.hf.space'>Marketing de Contenidos |</a> | |
| <a href='https://magnetimpact-tit-bot.hf.space'> Creacion de TITULOS |</a> | |
| <a href='https://magnetimpact-dp-bot.hf.space'> Descripcion de Productos |</a> | |
| <a href='https://magnetimpact-cp-bot.hf.space'> Caracteristicas de Productos |</a> | |
| <a href='https://wa.me/51927929109'> Desarrollado por MAGNET IMPACT - Agencia de Marketing Digital</a> | |
| </p> | |
| </div> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| # Inicializar cliente Groq | |
| client = Groq( | |
| api_key=os.environ['GROQ_API_KEY'], | |
| ) | |
| # Inicializar historial de chat y modelo seleccionado | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [] | |
| if "selected_model" not in st.session_state: | |
| st.session_state.selected_model = "mixtral-8x7b-32768" | |
| # Detalles del modelo | |
| models = { | |
| "mixtral-8x7b-32768": { | |
| "name": "Mixtral-8x7b-Instruct-v0.1", | |
| "tokens": 32768, | |
| "developer": "Mistral", | |
| }, | |
| } | |
| # Configurar el modelo y tokens | |
| model_option = "mixtral-8x7b-32768" | |
| max_tokens_range = models[model_option]["tokens"] | |
| # No mostrar la selección del modelo ni la barra de tokens | |
| st.session_state.max_tokens = max_tokens_range | |
| # Detectar cambio de modelo y limpiar historial de chat si el modelo ha cambiado | |
| if st.session_state.selected_model != model_option: | |
| st.session_state.messages = [] | |
| st.session_state.selected_model = model_option | |
| # Añadir un botón para "Limpiar Chat" | |
| if st.button("Limpiar Chat"): | |
| st.session_state.messages = [] | |
| # Cargar la imagen del avatar del asistente | |
| assistant_avatar = "botm.png" | |
| # Mostrar mensajes de chat del historial en la aplicación | |
| for message in st.session_state.messages: | |
| avatar = assistant_avatar if message["role"] == "assistant" else "🧑💻" | |
| with st.chat_message(message["role"], avatar=avatar): | |
| st.markdown(message["content"]) | |
| def generate_chat_responses(chat_completion) -> Generator[str, None, None]: | |
| """Generar contenido de respuesta del chat a partir de la respuesta de la API de Groq.""" | |
| for chunk in chat_completion: | |
| if chunk.choices[0].delta.content: | |
| yield chunk.choices[0].delta.content | |
| # Instrucción privada que se aplicará a cada mensaje | |
| private_instruction = ( | |
| "# Extract the benefits of the product, not the features. # You should be as brief as possible. # Omit the price, if any. # Do not mention the name of the product. # Use 3 paragraphs. # Try to synthesize or summarize. # Focus only on the benefits. # Highlight how this product helps the customer. # Always respond in Spanish. # The text you create will be used in an e-commerce product sales page through the Internet, so it must be persuasive, attractive, and above all very short and summarized. # Remember to keep the text short, summarized, synthesized in three paragraphs. # Surprise me with your best ideas! # Always answers in AMERICAN SPANISH. Stop after finish the first content genreated." | |
| ) | |
| # Manejar la entrada del chat del usuario | |
| if prompt := st.chat_input("Escribe tu mensaje aquí..."): | |
| st.session_state.messages.append({"role": "user", "content": prompt}) | |
| with st.chat_message("user", avatar="🧑💻"): | |
| st.markdown(prompt) | |
| # Preparar los mensajes para la API, incluyendo la instrucción privada | |
| messages_for_api = [ | |
| {"role": "system", "content": private_instruction}, | |
| ] + [ | |
| {"role": m["role"], "content": m["content"]} | |
| for m in st.session_state.messages | |
| ] | |
| # Obtener respuesta de la API de Groq | |
| try: | |
| chat_completion = client.chat.completions.create( | |
| model=model_option, | |
| messages=messages_for_api, | |
| max_tokens=max_tokens_range, | |
| stream=True, | |
| ) | |
| # Usar la función generadora con st.write_stream | |
| with st.chat_message("assistant", avatar=assistant_avatar): | |
| chat_responses_generator = generate_chat_responses(chat_completion) | |
| full_response = st.write_stream(chat_responses_generator) | |
| # Añadir la respuesta completa al historial de mensajes | |
| if isinstance(full_response, str): | |
| st.session_state.messages.append( | |
| {"role": "assistant", "content": full_response} | |
| ) | |
| else: | |
| combined_response = "\n".join(str(item) for item in full_response) | |
| st.session_state.messages.append( | |
| {"role": "assistant", "content": combined_response} | |
| ) | |
| except Exception as e: | |
| st.error(e, icon="❌") | |