# -*- coding: utf-8 -*- """Question_Answering_Gradio.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/12ga045iO8c2vMqYZQY4zPttnEv8dIUZe """ from transformers import pipeline from transformers import AutoModelForQuestionAnswering from transformers import AutoTokenizer model_checkpoint = "Madhana/distilroberta-base-finetuned-wikitext2-SQuAD-qa-WandB2" new_model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint) tokenizer = AutoTokenizer.from_pretrained("distilroberta-base", use_fast=True) qa = pipeline("question-answering", new_model, tokenizer, tokenizer) import gradio as gr demo = gr.Blocks() with demo: gr.Markdown("Language Model QA Demo") with gr.Tabs(): with gr.TabItem("Question Answering"): with gr.Row(): qa_input = gr.Textbox(label = "Input Text") qa_context = gr.Textbox(label = "Input Context") qa_output = gr.Textbox(label = "Output") qa_button = gr.Button("Answer") qa_button.click(qa, inputs=[qa_input, qa_context], outputs=qa_output) demo.launch() # share=True