Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,26 @@
|
|
| 1 |
-
# Use Auto-tokenizer
|
| 2 |
-
|
| 3 |
import streamlit as st
|
| 4 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
# Load model and tokenizer
|
| 5 |
+
model_name = "gpt-3.5-turbo"
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 8 |
+
|
| 9 |
+
def generate_blog_post(topic):
|
| 10 |
+
prompt = f"Write a detailed blog post about {topic}."
|
| 11 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
| 12 |
+
outputs = model.generate(inputs, max_length=512, num_return_sequences=1)
|
| 13 |
+
blog_post = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 14 |
+
return blog_post
|
| 15 |
|
| 16 |
+
# Streamlit interface
|
| 17 |
+
st.title("Blog Post Generator")
|
| 18 |
+
st.write("Enter a topic to generate a detailed blog post.")
|
| 19 |
|
| 20 |
+
topic = st.text_input("Topic", "")
|
| 21 |
+
if st.button("Generate Blog Post"):
|
| 22 |
+
if topic:
|
| 23 |
+
blog_post = generate_blog_post(topic)
|
| 24 |
+
st.write(blog_post)
|
| 25 |
+
else:
|
| 26 |
+
st.write("Please enter a topic to generate a blog post.")
|