# THE CODE WAS TAKEN AND ADAPTED FROM https://pengsongyou.github.io/sap # @inproceedings{Peng2021SAP, # author = {Peng, Songyou and Jiang, Chiyu "Max" and Liao, Yiyi and Niemeyer, Michael and Pollefeys, Marc and Geiger, Andreas}, # title = {Shape As Points: A Differentiable Poisson Solver}, # booktitle = {Advances in Neural Information Processing Systems (NeurIPS)}, # year = {2021} # } import torch import torch.nn as nn from .utils import spec_gaussian_filter, fftfreqs, img, grid_interp, point_rasterize import numpy as np import torch.fft class DPSR(nn.Module): def __init__(self, res, sig=10, scale=True, shift=True): """ :param res: tuple of output field resolution. eg., (128,128) :param sig: degree of gaussian smoothing """ super(DPSR, self).__init__() self.res = res self.sig = sig self.dim = len(res) self.denom = np.prod(res) G = spec_gaussian_filter(res=res, sig=sig).float() # self.G.requires_grad = False # True, if we also make sig a learnable parameter self.omega = fftfreqs(res, dtype=torch.float32) self.scale = scale self.shift = shift self.register_buffer("G", G) def forward(self, V, N): """ :param V: (batch, nv, 2 or 3) tensor for point cloud coordinates :param N: (batch, nv, 2 or 3) tensor for point normals :return phi: (batch, res, res, ...) tensor of output indicator function field """ assert(V.shape == N.shape) # [b, nv, ndims] ras_p = point_rasterize(V, N, self.res) # [b, n_dim, dim0, dim1, dim2] ras_s = torch.fft.rfftn(ras_p, dim=(2,3,4)) ras_s = ras_s.permute(*tuple([0]+list(range(2, self.dim+1))+[self.dim+1, 1])) N_ = ras_s[..., None] * self.G # [b, dim0, dim1, dim2/2+1, n_dim, 1] omega = fftfreqs(self.res, dtype=torch.float32).unsqueeze(-1) # [dim0, dim1, dim2/2+1, n_dim, 1] omega *= 2 * np.pi # normalize frequencies omega = omega.to(V.device) DivN = torch.sum(-img(torch.view_as_real(N_[..., 0])) * omega, dim=-2) Lap = -torch.sum(omega**2, -2) # [dim0, dim1, dim2/2+1, 1] Phi = DivN / (Lap+1e-6) # [b, dim0, dim1, dim2/2+1, 2] Phi = Phi.permute(*tuple([list(range(1,self.dim+2)) + [0]])) # [dim0, dim1, dim2/2+1, 2, b] Phi[tuple([0] * self.dim)] = 0 Phi = Phi.permute(*tuple([[self.dim+1] + list(range(self.dim+1))])) # [b, dim0, dim1, dim2/2+1, 2] phi = torch.fft.irfftn(torch.view_as_complex(Phi), s=self.res, dim=(1,2,3)) if self.shift or self.scale: # ensure values at points are zero fv = grid_interp(phi.unsqueeze(-1), V, batched=True).squeeze(-1) # [b, nv] if self.shift: # offset points to have mean of 0 offset = torch.mean(fv, dim=-1) # [b,] phi -= offset.view(*tuple([-1] + [1] * self.dim)) phi = phi.permute(*tuple([list(range(1,self.dim+1)) + [0]])) fv0 = phi[tuple([0] * self.dim)] # [b,] phi = phi.permute(*tuple([[self.dim] + list(range(self.dim))])) if self.scale: phi = -phi / torch.abs(fv0.view(*tuple([-1]+[1] * self.dim))) *0.5 return phi