MSaadTariq's picture
Update app.py
0348b7b verified
import streamlit as st
import cv2
import supervision as sv
from ultralytics import YOLO
import numpy as np
from PIL import Image
import io
import torch
# Set page config
st.set_page_config(page_title="Building Detection App", page_icon="🏒", layout="wide")
# Custom CSS with theme compatibility
st.markdown("""
<style>
.reportview-container {
background: var(--background-color);
}
.main {
background-color: var(--background-color);
padding: 2rem;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.stButton>button {
background-color: #4CAF50;
color: white;
font-weight: bold;
border: none;
border-radius: 5px;
padding: 0.5rem 1rem;
transition: all 0.3s;
}
.stButton>button:hover {
background-color: #45a049;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
}
.upload-box {
border: 2px dashed #4CAF50;
border-radius: 10px;
padding: 2rem;
text-align: center;
}
.theme-text {
color: var(--text-color);
}
</style>
""", unsafe_allow_html=True)
# Load the YOLO model
@st.cache_resource
def load_model():
model = YOLO("mosaic_medium_100_tiny_object.pt") # Update this to the filename of your model
model.to('cpu') # Ensure the model is on CPU
return model
model = load_model()
def process_image(image):
# Convert PIL Image to numpy array
image_np = np.array(image)
# Convert RGB to BGR (OpenCV uses BGR)
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
def callback(image_slice: np.ndarray) -> sv.Detections:
result = model(image_slice)[0]
return sv.Detections.from_ultralytics(result)
slicer = sv.InferenceSlicer(callback=callback, slice_wh=(256, 256), iou_threshold=0.8)
detections = slicer(image_cv2)
# Filter detections for building class (assuming class_id 2 is for buildings)
building_detections = detections[detections.class_id == 2]
label_annotator = sv.LabelAnnotator()
box_annotator = sv.BoxAnnotator()
annotated_image = box_annotator.annotate(scene=image_cv2.copy(), detections=building_detections)
annotated_image = label_annotator.annotate(scene=annotated_image, detections=building_detections)
# Convert BGR back to RGB for displaying in Streamlit
return cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
def main():
st.title("Building Detection App")
st.markdown('<p class="theme-text">Upload an image to detect buildings using our advanced AI model.</p>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown('<h3 class="theme-text">Upload Image</h3>', unsafe_allow_html=True)
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
if st.button("Detect Buildings"):
with st.spinner("Processing..."):
result_image = process_image(image)
with col2:
st.markdown('<h3 class="theme-text">Detection Results</h3>', unsafe_allow_html=True)
st.image(result_image, caption="Processed Image", use_column_width=True)
st.success("Detection completed successfully!")
else:
st.markdown(
"""
<div class="upload-box theme-text">
<h3>πŸ“ Upload an image to get started</h3>
<p>Supported formats: JPG, JPEG, PNG</p>
</div>
""",
unsafe_allow_html=True
)
with col2:
if uploaded_file is None:
st.markdown('<h3 class="theme-text">How it works</h3>', unsafe_allow_html=True)
st.markdown(
"""
<p class="theme-text">
1. <strong>Upload</strong> an image using the file uploader on the left.<br>
2. Click the <strong>Detect Buildings</strong> button to process the image.<br>
3. View the results with bounding boxes around detected buildings.<br><br>
Our AI model is trained to identify various types of buildings in different environments.
</p>
""",
unsafe_allow_html=True
)
st.markdown("---")
#st.markdown('<p class="theme-text"></p>', unsafe_allow_html=True)
if __name__ == "__main__":
main()