File size: 9,692 Bytes
2596438 ce3871f 2596438 06f4598 2596438 876eb15 ce3871f 2596438 1e3305f 2596438 2e385df 2596438 06f4598 ce3871f 2e385df 876eb15 ce3871f 06f4598 1e3305f 06f4598 1e3305f 06f4598 ce3871f 2596438 ce3871f 2596438 2e385df 2596438 2e385df 59d8d3d 2e385df 2596438 06f4598 2596438 2e385df 2596438 2e385df 2596438 2e385df 2596438 29e5a8a 2596438 1e3305f 2596438 fb83fd2 2596438 2e385df 2596438 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
from __future__ import annotations
from pathlib import Path
import time
import gradio as gr
from gradio_molecule3d import Molecule3D
from gradio_molecule2d import molecule2d
import numpy as np
from rdkit import Chem
from rdkit.Chem import AllChem
import pandas as pd
from biotite.structure import centroid, from_template
from biotite.structure.io import load_structure
from biotite.structure.io.mol import MOLFile, SDFile
from biotite.structure.io.pdb import PDBFile
from plinder.eval.docking.write_scores import evaluate
EVAL_METRICS = ["system", "LDDT-PLI", "LDDT-LP", "BISY-RMSD"]
EVAL_METRICS_PINDER = ["system","L_rms", "I_rms", "F_nat", "DOCKQ", "CAPRI_class"]
import os
from huggingface_hub import HfApi
# Info to change for your repository
# ----------------------------------
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
OWNER = "MLSB" # Change to your org - don't forget to create a results and request dataset, with the correct format!
# ----------------------------------
REPO_ID = f"{OWNER}/leaderboard2024"
QUEUE_REPO = f"{OWNER}/requests"
RESULTS_REPO = f"{OWNER}/results"
# If you setup a cache later, just change HF_HOME
CACHE_PATH=os.getenv("HF_HOME", ".")
# Local caches
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
API = HfApi(token=TOKEN)
def get_metrics(
system_id: str,
receptor_file: Path,
ligand_file: Path,
flexible: bool = True,
posebusters: bool = True,
methodname: str = "",
store:bool =True
) -> tuple[pd.DataFrame, float]:
start_time = time.time()
metrics = pd.DataFrame(
[
evaluate(
model_system_id=system_id,
reference_system_id=system_id,
receptor_file=receptor_file,
ligand_file_list=[Path(ligand_file)],
flexible=flexible,
posebusters=posebusters,
posebusters_full=False,
).get("LIG_0", {})
]
)
if posebusters:
metrics["posebusters"] = metrics[
[col for col in metrics.columns if col.startswith("posebusters_")]
].sum(axis=1)
metrics["posebusters_valid"] = metrics[
[col for col in metrics.columns if col.startswith("posebusters_")]
].sum(axis=1) == 20
columns = ["reference", "lddt_pli_ave", "lddt_lp_ave", "bisy_rmsd_ave"]
if flexible:
columns.extend(["lddt", "bb_lddt"])
if posebusters:
columns.extend([col for col in metrics.columns if col.startswith("posebusters")])
metrics = metrics[columns].copy()
mapping = {
"lddt_pli_ave": "LDDT-PLI",
"lddt_lp_ave": "LDDT-LP",
"bisy_rmsd_ave": "BISY-RMSD",
"reference": "system",
}
if flexible:
mapping["lddt"] = "LDDT"
mapping["bb_lddt"] = "Backbone LDDT"
if posebusters:
mapping["posebusters"] = "PoseBusters #checks"
mapping["posebusters_valid"] = "PoseBusters valid"
metrics.rename(
columns=mapping,
inplace=True,
)
if store:
with tempfile.NamedTemporaryFile as temp:
metrics.to_csv(temp.name)
API.upload_file(
path_or_fileobj=temp.name,
path_in_repo=f"{dataset}/{methodname}/{system_id}/",
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to eval queue",
)
API.upload_file(
path_or_fileobj=receptor_file.name,
path_in_repo=f"{dataset}/{methodname}/{system_id}/",
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to eval queue",
)
API.upload_file(
path_or_fileobj=ligand_file.name,
path_in_repo=f"{dataset}/{methodname}/{system_id}/",
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to eval queue",
)
end_time = time.time()
run_time = end_time - start_time
return gr.DataFrame(metrics, visible=True), run_time
def get_metrics_pinder(
system_id: str,
complex_file: Path,
methodname: str = "",
store:bool =True
) -> tuple[pd.DataFrame, float]:
start_time = time.time()
if not isinstance(prediction, Path):
prediction = Path(prediction)
# Infer the ground-truth name from prediction filename or directory where its stored
# We need to figure out how we plan to consistently map predictions to systems so that eval metrics can be calculated
# I assume we won't distribute the ground-truth structures (though they are already accessible if we don't blind system IDs)
native = Path(f"./ground_truth/{system_id}.pdb")
# alternatively
# native = Path(f"./ground_truth/{prediction.parent.parent.stem}.pdb")
# OR we need the user to provide prediction + system name
try:
# Get eval metrics for the prediction
bdq = BiotiteDockQ(native, complex_file.name, parallel_io=False)
metrics = bdq.calculate()
metrics = metrics[["system", "LRMS", "iRMS", "Fnat", "DockQ", "CAPRI"]].copy()
metrics.rename(columns={"LRMS": "L_rms", "iRMS": "I_rms", "Fnat": "F_nat", "DockQ": "DOCKQ", "CAPRI": "CAPRI_class"}, inplace=True)
except Exception as e:
failed_metrics = {"L_rms": 100.0, "I_rms": 100.0, "F_nat": 0.0, "DOCKQ": 0.0, "CAPRI_class": "Incorrect"}
metrics = pd.DataFrame([failed_metrics])
metrics["system"] = native.stem
gr.Error(f"Failed to evaluate prediction [{prediction}]:\n{e}")
if store:
# Upload to hub
with tempfile.NamedTemporaryFile as temp:
metrics.to_csv(temp.name)
API.upload_file(
path_or_fileobj=temp.name,
path_in_repo=f"{dataset}/{methodname}/{system_id}/",
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to eval queue",
)
API.upload_file(
path_or_fileobj=complex_file.name,
path_in_repo=f"{dataset}/{methodname}/{system_id}/",
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to eval queue",
)
end_time = time.time()
run_time = end_time - start_time
return gr.DataFrame(metrics, visible=True), run_time
with gr.Blocks() as app:
with gr.Tab("🧬 PINDER evaluation template"):
with gr.Row():
with gr.Column():
input_system_id_pinder = gr.Textbox(label="PINDER system ID")
input_complex_pinder = gr.File(label="Receptor file")
methodname_pinder = gr.Textbox(label="Name of your method in the format mlsb/spacename")
store_pinder = gr.Checkbox(label="Store on huggingface for leaderboard", value=False)
gr.Examples(
[
[
"4neh__1__1.B__1.H",
"input_protein_test.cif",
"mlsb/test",
False
],
],
[input_system_id_pinder, input_complex_pinder, methodname_pinder, store_pinder],
)
eval_btn_pinder = gr.Button("Run Evaluation")
with gr.Tab("⚖️ PLINDER evaluation template"):
with gr.Row():
with gr.Column():
input_system_id = gr.Textbox(label="PLINDER system ID")
input_receptor_file = gr.File(label="Receptor file (CIF)")
input_ligand_file = gr.File(label="Ligand file (SDF)")
flexible = gr.Checkbox(label="Flexible docking", value=True)
posebusters = gr.Checkbox(label="PoseBusters", value=True)
methodname = gr.Textbox(label="Name of your method in the format mlsb/spacename")
store = gr.Checkbox(label="Store on huggingface for leaderboard", value=False)
gr.Examples(
[
[
"4neh__1__1.B__1.H",
"input_protein_test.cif",
"input_ligand_test.sdf",
True,
True,
"mlsb/test",
False
],
],
[input_system_id, input_receptor_file, input_ligand_file, flexible, posebusters, methodname, store],
)
eval_btn = gr.Button("Run Evaluation")
eval_run_time = gr.Textbox(label="Evaluation runtime")
metric_table = gr.DataFrame(
pd.DataFrame([], columns=EVAL_METRICS), label="Evaluation metrics", visible=False
)
metric_table_pinder = gr.DataFrame(
pd.DataFrame([], columns=EVAL_METRICS_PINDER), label="Evaluation metrics", visible=False
)
eval_btn.click(
get_metrics,
inputs=[input_system_id, input_receptor_file, input_ligand_file, flexible, posebusters, methodname, store],
outputs=[metric_table, eval_run_time],
)
eval_btn_pinder.click(
get_metrics_pinder,
inputs=[input_system_id_pinder, input_complex_pinder, methodname_pinder, store_pinder],
outputs=[metric_table_pinder, eval_run_time],
)
app.launch() |