import cv2 import numpy as np import os import argparse from typing import Union from matplotlib import pyplot as plt class ScalingSquareDetector: def __init__(self, feature_detector="ORB", debug=False): """ Initialize the detector with the desired feature matching algorithm. :param feature_detector: "ORB" or "SIFT" (default is "ORB"). :param debug: If True, saves intermediate images for debugging. """ self.feature_detector = feature_detector self.debug = debug self.detector = self._initialize_detector() def _initialize_detector(self): """ Initialize the chosen feature detector. :return: OpenCV detector object. """ if self.feature_detector.upper() == "SIFT": return cv2.SIFT_create() elif self.feature_detector.upper() == "ORB": return cv2.ORB_create() else: raise ValueError("Invalid feature detector. Choose 'ORB' or 'SIFT'.") def find_scaling_square( self, reference_image_path, target_image, known_size_mm, roi_margin=30 ): """ Detect the scaling square in the target image based on the reference image. :param reference_image_path: Path to the reference image of the square. :param target_image_path: Path to the target image containing the square. :param known_size_mm: Physical size of the square in millimeters. :param roi_margin: Margin to expand the ROI around the detected square (in pixels). :return: Scaling factor (mm per pixel). """ target_image = cv2.cvtColor(target_image, cv2.COLOR_RGB2GRAY) roi = target_image.copy() # Find contours in the ROI roi_blurred = cv2.GaussianBlur(roi, (5, 5), 0) _, roi_binary = cv2.threshold( roi_blurred, 128, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU ) contours, _ = cv2.findContours( roi_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) if not contours: raise ValueError("No contours found in the cropped ROI.") # Select the largest square-like contour largest_square = None largest_square_area = 0 for contour in contours: x_c, y_c, w_c, h_c = cv2.boundingRect(contour) aspect_ratio = w_c / float(h_c) if 0.9 <= aspect_ratio <= 1.1: peri = cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, 0.02 * peri, True) if len(approx) == 4: area = cv2.contourArea(contour) if area > largest_square_area: largest_square = contour largest_square_area = area if largest_square is None: raise ValueError("No square-like contour found in the ROI.") # Draw the largest contour on the original image target_image_color = cv2.cvtColor(target_image, cv2.COLOR_GRAY2BGR) cv2.drawContours( target_image_color, largest_square, -1, (255, 0, 0), 3 ) if self.debug: cv2.imwrite("largest_contour.jpg", target_image_color) # Calculate the bounding rectangle of the largest contour x, y, w, h = cv2.boundingRect(largest_square) square_width_px = w square_height_px = h # Calculate the scaling factor avg_square_size_px = (square_width_px + square_height_px) / 2 scaling_factor = known_size_mm / avg_square_size_px # mm per pixel return scaling_factor def draw_debug_images(self, output_folder): """ Save debug images if enabled. :param output_folder: Directory to save debug images. """ if self.debug: if not os.path.exists(output_folder): os.makedirs(output_folder) debug_images = ["largest_contour.jpg"] for img_name in debug_images: if os.path.exists(img_name): os.rename(img_name, os.path.join(output_folder, img_name)) def calculate_scaling_factor( reference_image_path, target_image, known_square_size_mm=9.0, feature_detector="ORB", debug=False, roi_margin=30, ): # Initialize detector detector = ScalingSquareDetector(feature_detector=feature_detector, debug=debug) # Find scaling square and calculate scaling factor scaling_factor = detector.find_scaling_square( reference_image_path=reference_image_path, target_image=target_image, known_size_mm=known_square_size_mm, roi_margin=roi_margin, ) # Save debug images if debug: detector.draw_debug_images("debug_outputs") return scaling_factor # Example usage: if __name__ == "__main__": import os from PIL import Image from ultralytics import YOLO from app import yolo_detect, shrink_bbox from ultralytics.utils.plotting import save_one_box for idx, file in enumerate(os.listdir("./sample_images")): img = np.array(Image.open(os.path.join("./sample_images", file))) img = yolo_detect(img, ['box']) model = YOLO("./runs/detect/train/weights/last.pt") res = model.predict(img, conf=0.6) box_img = save_one_box(res[0].cpu().boxes.xyxy, im=res[0].orig_img, save=False) img = shrink_bbox(box_img, 1.20) cv2.imwrite(f"./outputs/{idx}_{file}", img) try: scaling_factor = calculate_scaling_factor( reference_image_path="./Reference_ScalingBox.jpg", target_image=img, known_square_size_mm=9.0, feature_detector="ORB", debug=False, roi_margin=90, ) print(f"Scaling Factor (mm per pixel): {scaling_factor:.6f}") except Exception as e: from traceback import print_exc print(print_exc()) print(f"Error: {e}")