Spaces:
Running
Running
import os | |
from pathlib import Path | |
from typing import List, Union | |
from PIL import Image | |
import numpy as np | |
import torch | |
from torchvision import transforms | |
from ultralytics import YOLOWorld, YOLO | |
from ultralytics.engine.results import Results | |
from ultralytics.utils.plotting import save_one_box | |
from transformers import AutoModelForImageSegmentation | |
import cv2 | |
import ezdxf | |
import gradio as gr | |
import gc | |
from scalingtestupdated import calculate_scaling_factor | |
def yolo_detect( | |
image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor], | |
classes: List[str], | |
) -> np.ndarray: | |
drawer_detector = YOLOWorld("yolov8x-worldv2.pt") | |
drawer_detector.set_classes(classes) | |
results: List[Results] = drawer_detector.predict(image) | |
boxes = [] | |
for result in results: | |
boxes.append( | |
save_one_box(result.cpu().boxes.xyxy, im=result.orig_img, save=False) | |
) | |
del drawer_detector | |
return boxes[0] | |
def remove_bg(image: np.ndarray) -> np.ndarray: | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"zhengpeng7/BiRefNet", trust_remote_code=True | |
) | |
device = "cpu" | |
torch.set_float32_matmul_precision(["high", "highest"][0]) | |
birefnet.to(device) | |
birefnet.eval() | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
image = Image.fromarray(image) | |
input_images = transform_image(image).unsqueeze(0).to("cpu") | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
# Show Results | |
pred_pil = transforms.ToPILImage()(pred) | |
# Scale proportionally with max length to 1024 for faster showing | |
scale_ratio = 1024 / max(image.size) | |
scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio)) | |
del birefnet | |
return np.array(pred_pil.resize(scaled_size)) | |
def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple, expansion_factor: float = 1.5) -> np.ndarray: | |
# Unpack the bounding box | |
x_min, y_min, x_max, y_max = map(int, bbox) | |
# Calculate scaling factors | |
scale_x = processed_size[1] / orig_size[1] # Width scale | |
scale_y = processed_size[0] / orig_size[0] # Height scale | |
# Adjust bounding box coordinates | |
x_min = int(x_min * scale_x) | |
x_max = int(x_max * scale_x) | |
y_min = int(y_min * scale_y) | |
y_max = int(y_max * scale_y) | |
# Calculate expanded box coordinates | |
box_width = x_max - x_min | |
box_height = y_max - y_min | |
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2)) | |
expanded_x_max = min(image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2)) | |
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2)) | |
expanded_y_max = min(image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2)) | |
# Black out the expanded region | |
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0 | |
return image | |
def extract_outlines(binary_image: np.ndarray) -> np.ndarray: | |
""" | |
Extracts and draws the outlines of masks from a binary image. | |
Args: | |
binary_image: Grayscale binary image where white represents masks and black is the background. | |
Returns: | |
Image with outlines drawn. | |
""" | |
# Detect contours from the binary image | |
contours, _ = cv2.findContours( | |
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE | |
) | |
# Create a blank image to draw contours | |
outline_image = np.zeros_like(binary_image) | |
# Smooth the contours | |
smoothed_contours = [] | |
for contour in contours: | |
# Calculate epsilon for approxPolyDP | |
epsilon = 0.002 * cv2.arcLength(contour, True) | |
# Approximate the contour with fewer points | |
smoothed_contour = cv2.approxPolyDP(contour, epsilon, True) | |
smoothed_contours.append(smoothed_contour) | |
# Draw the contours on the blank image | |
cv2.drawContours( | |
outline_image, smoothed_contours, -1, (255), thickness=1 | |
) # White color for outlines | |
return cv2.bitwise_not(outline_image), smoothed_contours | |
def shrink_bbox(image: np.ndarray, shrink_factor: float): | |
""" | |
Crops the central 80% of the image, maintaining proportions for non-square images. | |
Args: | |
image: Input image as a NumPy array. | |
Returns: | |
Cropped image as a NumPy array. | |
""" | |
height, width = image.shape[:2] | |
center_x, center_y = width // 2, height // 2 | |
# Calculate 80% dimensions | |
new_width = int(width * shrink_factor) | |
new_height = int(height * shrink_factor) | |
# Determine the top-left and bottom-right points for cropping | |
x1 = max(center_x - new_width // 2, 0) | |
y1 = max(center_y - new_height // 2, 0) | |
x2 = min(center_x + new_width // 2, width) | |
y2 = min(center_y + new_height // 2, height) | |
# Crop the image | |
cropped_image = image[y1:y2, x1:x2] | |
return cropped_image | |
# def to_dxf(outlines): | |
# upper_range_tuple = (200) | |
# lower_range_tuple = (0) | |
# doc = ezdxf.new('R2010') | |
# msp = doc.modelspace() | |
# masked_jpg = cv2.inRange(outlines,lower_range_tuple, upper_range_tuple) | |
# for i in range(0,masked_jpg.shape[0]): | |
# for j in range(0,masked_jpg.shape[1]): | |
# if masked_jpg[i][j] == 255: | |
# msp.add_line((j,masked_jpg.shape[0] - i), (j,masked_jpg.shape[0] - i)) | |
# doc.saveas("./outputs/out.dxf") | |
# return "./outputs/out.dxf" | |
def to_dxf(contours): | |
doc = ezdxf.new() | |
msp = doc.modelspace() | |
for contour in contours: | |
points = [(point[0][0], point[0][1]) for point in contour] | |
msp.add_lwpolyline(points, close=True) # Add a polyline for each contour | |
doc.saveas("./outputs/out.dxf") | |
return "./outputs/out.dxf" | |
def smooth_contours(contour): | |
epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01) | |
return cv2.approxPolyDP(contour, epsilon, True) | |
def scale_image(image: np.ndarray, scale_factor: float) -> np.ndarray: | |
""" | |
Resize image by scaling both width and height by the same factor. | |
Args: | |
image: Input numpy image | |
scale_factor: Factor to scale the image (e.g., 0.5 for half size, 2 for double size) | |
Returns: | |
np.ndarray: Resized image | |
""" | |
if scale_factor <= 0: | |
raise ValueError("Scale factor must be positive") | |
current_height, current_width = image.shape[:2] | |
# Calculate new dimensions | |
new_width = int(current_width * scale_factor) | |
new_height = int(current_height * scale_factor) | |
# Choose interpolation method based on whether we're scaling up or down | |
interpolation = cv2.INTER_AREA if scale_factor < 1 else cv2.INTER_CUBIC | |
# Resize image | |
resized_image = cv2.resize( | |
image, (new_width, new_height), interpolation=interpolation | |
) | |
return resized_image | |
def detect_reference_square(img) -> np.ndarray: | |
box_detector = YOLO("./last.pt") | |
res = box_detector.predict(img) | |
del box_detector | |
return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[0].cpu().boxes.xyxy[0 | |
] | |
def predict(image): | |
drawer_img = yolo_detect(image, ["box"]) | |
shrunked_img = shrink_bbox(drawer_img, 0.8) | |
# Detect the scaling reference square | |
reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img) | |
reference_obj_img_scaled = shrink_bbox(reference_obj_img, 1.2) | |
try: | |
scaling_factor = calculate_scaling_factor( | |
reference_image_path="./Reference_ScalingBox.jpg", | |
target_image=reference_obj_img_scaled, | |
feature_detector="SIFT", | |
) | |
except: | |
scaling_factor = 1.0 | |
# Save original size before `remove_bg` processing | |
orig_size = shrunked_img.shape[:2] | |
# Generate foreground mask and save its size | |
objects_mask = remove_bg(shrunked_img) | |
processed_size = objects_mask.shape[:2] | |
# Exclude scaling box region from objects mask | |
objects_mask = exclude_scaling_box( | |
objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=3.0 | |
) | |
# Scale the object mask according to scaling factor | |
# objects_mask_scaled = scale_image(objects_mask, scaling_factor) | |
Image.fromarray(objects_mask).save("./outputs/scaled_mask_new.jpg") | |
outlines, contours = extract_outlines(objects_mask) | |
dxf = to_dxf(contours) | |
return outlines, dxf, objects_mask, scaling_factor, reference_obj_img_scaled | |
if __name__ == "__main__": | |
os.makedirs("./outputs", exist_ok=True) | |
ifer = gr.Interface( | |
fn=predict, | |
inputs=[gr.Image(label="Input Image")], | |
outputs=[ | |
gr.Image(label="Ouput Image"), | |
gr.File(label="DXF file"), | |
gr.Image(label="Mask"), | |
gr.Textbox(label="Scaling Factor(mm)", placeholder="Every pixel is equal to mentioned number in mm(milimeter)"), | |
gr.Image(label="Image used for calculating scaling factor") | |
], | |
examples=["./examples/Test20.jpg", "./examples/Test21.jpg", "./examples/Test22.jpg", "./examples/Test23.jpg"] | |
) | |
ifer.launch(share=True) | |