import os from pathlib import Path from typing import List, Union from PIL import Image import ezdxf.units import numpy as np import torch from torchvision import transforms from ultralytics import YOLOWorld, YOLO from ultralytics.engine.results import Results from ultralytics.utils.plotting import save_one_box from transformers import AutoModelForImageSegmentation import cv2 import ezdxf import gradio as gr import gc from scalingtestupdated import calculate_scaling_factor from scipy.interpolate import splprep, splev from scipy.ndimage import gaussian_filter1d import json birefnet = AutoModelForImageSegmentation.from_pretrained( "zhengpeng7/BiRefNet", trust_remote_code=True ) device = "cpu" torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet.to(device) birefnet.eval() transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) def remove_bg(image: np.ndarray) -> np.ndarray: image = Image.fromarray(image) input_images = transform_image(image).unsqueeze(0).to("cpu") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() # Show Results pred_pil: Image = transforms.ToPILImage()(pred) print(pred_pil) # Scale proportionally with max length to 1024 for faster showing scale_ratio = 1024 / max(image.size) scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio)) print(f"scaled size {scaled_size}") return np.array(pred_pil.resize(scaled_size)) def make_square(img: np.ndarray): # Get dimensions height, width = img.shape[:2] # Find the larger dimension max_dim = max(height, width) # Calculate padding pad_height = (max_dim - height) // 2 pad_width = (max_dim - width) // 2 # Handle odd dimensions pad_height_extra = max_dim - height - 2 * pad_height pad_width_extra = max_dim - width - 2 * pad_width # Create padding with edge colors if len(img.shape) == 3: # Color image # Pad the image padded = np.pad( img, ( (pad_height, pad_height + pad_height_extra), (pad_width, pad_width + pad_width_extra), (0, 0), ), mode="edge", ) else: # Grayscale image padded = np.pad( img, ( (pad_height, pad_height + pad_height_extra), (pad_width, pad_width + pad_width_extra), ), mode="edge", ) return padded def exclude_scaling_box( image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple, expansion_factor: float = 1.2, ) -> np.ndarray: # Unpack the bounding box x_min, y_min, x_max, y_max = map(int, bbox) # Calculate scaling factors scale_x = processed_size[1] / orig_size[1] # Width scale scale_y = processed_size[0] / orig_size[0] # Height scale # Adjust bounding box coordinates x_min = int(x_min * scale_x) x_max = int(x_max * scale_x) y_min = int(y_min * scale_y) y_max = int(y_max * scale_y) # Calculate expanded box coordinates box_width = x_max - x_min box_height = y_max - y_min expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2)) expanded_x_max = min( image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2) ) expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2)) expanded_y_max = min( image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2) ) # Black out the expanded region image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0 return image def resample_contour(contour): # Get all the parameters at the start: num_points = 1000 smoothing_factor = 5 spline_degree = 3 # Typically k=3 for cubic spline smoothed_x_sigma = 1 smoothed_y_sigma = 1 # Ensure contour has enough points if len(contour) < spline_degree + 1: raise ValueError(f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points.") contour = contour[:, 0, :] tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor) u = np.linspace(0, 1, num_points) resampled_points = splev(u, tck) smoothed_x = gaussian_filter1d(resampled_points[0], sigma=smoothed_x_sigma) smoothed_y = gaussian_filter1d(resampled_points[1], sigma=smoothed_y_sigma) return np.array([smoothed_x, smoothed_y]).T def save_dxf_spline(inflated_contours, scaling_factor, height): degree = 3 closed = True # Create a new DXF document with millimeters as the unit doc = ezdxf.new(units=ezdxf.units.MM) doc.units = ezdxf.units.MM # Ensure units are millimeters doc.header["$INSUNITS"] = ezdxf.units.MM # Set insertion units to millimeters msp = doc.modelspace() for contour in inflated_contours: try: resampled_contour = resample_contour(contour) points = [ (x * scaling_factor, (height - y) * scaling_factor) for x, y in resampled_contour ] if len(points) >= 3: if np.linalg.norm(np.array(points[0]) - np.array(points[-1])) > 1e-2: points.append(points[0]) spline = msp.add_spline(points, degree=degree) spline.closed = closed except ValueError as e: print(f"Skipping contour: {e}") dxf_filepath = os.path.join("./outputs", "out.dxf") doc.saveas(dxf_filepath) return dxf_filepath def extract_outlines(binary_image: np.ndarray) -> np.ndarray: """ Extracts and draws the outlines of masks from a binary image. Args: binary_image: Grayscale binary image where white represents masks and black is the background. Returns: Image with outlines drawn. """ # Detect contours from the binary image contours, _ = cv2.findContours( binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE ) outline_image = np.zeros_like(binary_image) # Draw the contours on the blank image cv2.drawContours( outline_image, contours, -1, (255), thickness=1 ) # White color for outlines return cv2.bitwise_not(outline_image), contours def to_dxf(contours): # Create a new DXF document with millimeters as the unit doc = ezdxf.new(units=ezdxf.units.MM) doc.units = ezdxf.units.MM # Ensure units are millimeters doc.header["$INSUNITS"] = ezdxf.units.MM # Set insertion units to millimeters) msp = doc.modelspace() try: for contour in contours: points = [(point[0][0], point[0][1]) for point in contour] msp.add_lwpolyline(points, close=True) # Add a polyline for each contour except Exception as e: raise gr.Error(f"Unable to generate DXF: {e}") output_path = "./outputs/out.dxf" doc.saveas(output_path) return output_path def smooth_contours(contour): epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01) return cv2.approxPolyDP(contour, epsilon, True) def scale_image(image: np.ndarray, scale_factor: float) -> np.ndarray: """ Resize image by scaling both width and height by the same factor. Args: image: Input numpy image scale_factor: Factor to scale the image (e.g., 0.5 for half size, 2 for double size) Returns: np.ndarray: Resized image """ if scale_factor <= 0: raise ValueError("Scale factor must be positive") current_height, current_width = image.shape[:2] # Calculate new dimensions new_width = int(current_width * scale_factor) new_height = int(current_height * scale_factor) # Choose interpolation method based on whether we're scaling up or down interpolation = cv2.INTER_AREA if scale_factor < 1 else cv2.INTER_CUBIC # Resize image resized_image = cv2.resize( image, (new_width, new_height), interpolation=interpolation ) return resized_image def detect_reference_square(img) -> np.ndarray: box_detector = YOLO("./best1.pt") res = box_detector.predict(img, conf=0.05) del box_detector return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[ 0 ].cpu().boxes.xyxy[0] def resize_img(img: np.ndarray, resize_dim): return np.array(Image.fromarray(img).resize(resize_dim)) def predict(image, offset, coin_size_mm): if offset < 0: raise gr.Error("Offset Value Can't be negative") try: reference_obj_img, scaling_box_coords = detect_reference_square(image) except: raise gr.Error("Unable to detect the COIN. Please try again with different magnification.") reference_obj_img = make_square(reference_obj_img) reference_square_mask = remove_bg(reference_obj_img) reference_square_mask = resize_img(reference_square_mask, (reference_obj_img.shape[1], reference_obj_img.shape[0])) try: scaling_factor= calculate_scaling_factor( target_image=reference_square_mask, reference_obj_size_mm = coin_size_mm, feature_detector="ORB", ) except Exception as e: scaling_factor = None print(f"Error calculating scaling factor: {e}") # Default to a scaling factor if calculation fails if scaling_factor is None or scaling_factor == 0: scaling_factor = 0.07 print("Using default scaling factor due to calculation error") orig_size = image.shape[:2] objects_mask = remove_bg(image) processed_size = objects_mask.shape[:2] objects_mask = exclude_scaling_box( objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=1.2, ) objects_mask = resize_img(objects_mask, (image.shape[1], image.shape[0])) # Ensure offset_inches is valid if scaling_factor != 0: offset_pixels = (float(offset) / float(scaling_factor)) * 2 + 1 else: offset_pixels = 1 # Default value in case of invalid scaling factor dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)) Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg") outlines, contours = extract_outlines(dilated_mask) shrunked_img_contours = cv2.drawContours(image, contours, -1, (0, 0, 255), thickness=2) dxf = save_dxf_spline(contours, scaling_factor, processed_size[0]) # dxf = to_dxf(contours) return ( shrunked_img_contours, outlines, dxf, dilated_mask, scaling_factor, ) if __name__ == "__main__": os.makedirs("./outputs", exist_ok=True) # Language selector in UI ifer = gr.Interface( fn=predict, inputs=[ gr.Image(label="Input Image", type="numpy"), gr.Number(label="Offset value for Mask(mm)", value=0.15), gr.Number(label="Diameter of reference coin(mm). Adjust according to coin.", value=20), ], outputs=[ gr.Image(label="Output Image"), gr.Image(label="Outlines of Objects"), gr.File(label="DXF file"), gr.Image(label="Mask"), gr.Textbox( label="Scaling Factor(mm)", placeholder="Every pixel is equal to mentioned number in millimeters", ), ], examples=[ ["./examples/Test20.jpg", 0.15], ["./examples/Test21.jpg", 0.15], ["./examples/Test22.jpg", 0.15], ["./examples/Test23.jpg", 0.15], ], ) ifer.launch(share=True)