File size: 12,199 Bytes
c8ddb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
"""Module containing the loss functions for the GANs."""
from typing import Any, Dict

import torch
from torch import nn

# pylint: disable=too-many-arguments
# pylint: disable=too-many-locals


def generator_loss(
    logits: Dict[str, Dict[str, torch.Tensor]],
    local_fake_incept_feat: torch.Tensor,
    global_fake_incept_feat: torch.Tensor,
    real_labels: torch.Tensor,
    words_emb: torch.Tensor,
    sent_emb: torch.Tensor,
    match_labels: torch.Tensor,
    cap_lens: torch.Tensor,
    class_ids: torch.Tensor,
    real_vgg_feat: torch.Tensor,
    fake_vgg_feat: torch.Tensor,
    const_dict: Dict[str, float],
) -> Any:
    """Calculate the loss for the generator.

    Args:
        logits: Dictionary with fake/real and word-level/uncond/cond logits

        local_fake_incept_feat: The local inception features for the fake images.

        global_fake_incept_feat: The global inception features for the fake images.

        real_labels: Label for "real" image as predicted by discriminator,
        this is a tensor of ones. [shape: (batch_size, 1)].

        word_labels: POS tagged word labels for the captions. [shape: (batch_size, L)]

        words_emb: The embeddings for all the words in the captions.
        shape: (batch_size, embedding_size, max_caption_length)

        sent_emb: The embeddings for the sentences.
        shape: (batch_size, embedding_size)

        match_labels: Tensor of shape: (batch_size, 1).
        This is of the form torch.tensor([0, 1, 2, ..., batch-1])

        cap_lens: The length of the 'actual' captions in the batch [without padding]
        shape: (batch_size, 1)

        class_ids: The class ids for the instance. shape: (batch_size, 1)

        real_vgg_feat: The vgg features for the real images. shape: (batch_size, 128, 128, 128)
        fake_vgg_feat: The vgg features for the fake images. shape: (batch_size, 128, 128, 128)

        const_dict: The dictionary containing the constants.
    """
    lambda1 = const_dict["lambda1"]
    total_error_g = 0.0

    cond_logits = logits["fake"]["cond"]
    cond_err_g = nn.BCEWithLogitsLoss()(cond_logits, real_labels)

    uncond_logits = logits["fake"]["uncond"]
    uncond_err_g = nn.BCEWithLogitsLoss()(uncond_logits, real_labels)

    # add up the conditional and unconditional losses
    loss_g = cond_err_g + uncond_err_g
    total_error_g += loss_g

    # DAMSM Loss from attnGAN.
    loss_damsm = damsm_loss(
        local_fake_incept_feat,
        global_fake_incept_feat,
        words_emb,
        sent_emb,
        match_labels,
        cap_lens,
        class_ids,
        const_dict,
    )

    total_error_g += loss_damsm

    loss_per = 0.5 * nn.MSELoss()(real_vgg_feat, fake_vgg_feat)  # perceptual loss

    total_error_g += lambda1 * loss_per

    return total_error_g


def damsm_loss(
    local_incept_feat: torch.Tensor,
    global_incept_feat: torch.Tensor,
    words_emb: torch.Tensor,
    sent_emb: torch.Tensor,
    match_labels: torch.Tensor,
    cap_lens: torch.Tensor,
    class_ids: torch.Tensor,
    const_dict: Dict[str, float],
) -> Any:
    """Calculate the DAMSM loss from the attnGAN paper.

    Args:
        local_incept_feat: The local inception features. [shape: (batch, D, 17, 17)]

        global_incept_feat: The global inception features. [shape: (batch, D)]

        words_emb: The embeddings for all the words in the captions.

        shape: (batch, D, max_caption_length)

        sent_emb: The embeddings for the sentences. shape: (batch_size, D)

        match_labels: Tensor of shape: (batch_size, 1).
        This is of the form torch.tensor([0, 1, 2, ..., batch-1])

        cap_lens: The length of the 'actual' captions in the batch [without padding]
        shape: (batch_size, 1)

        class_ids: The class ids for the instance. shape: (batch, 1)

        const_dict: The dictionary containing the constants.
    """
    batch_size = match_labels.size(0)
    # Mask mis-match samples, that come from the same class as the real sample
    masks = []

    match_scores = []
    gamma1 = const_dict["gamma1"]
    gamma2 = const_dict["gamma2"]
    gamma3 = const_dict["gamma3"]
    lambda3 = const_dict["lambda3"]

    for i in range(batch_size):
        mask = (class_ids == class_ids[i]).int()
        # This ensures that "correct class" index is not included in the mask.
        mask[i] = 0
        masks.append(mask.reshape(1, -1))  # shape: (1, batch)

        numb_words = int(cap_lens[i])
        # shape: (1, D, L), this picks the caption at ith batch index.
        query_words = words_emb[i, :, :numb_words].unsqueeze(0)
        # shape: (batch, D, L), this expands the same caption for all batch indices.
        query_words = query_words.repeat(batch_size, 1, 1)

        c_i = compute_region_context_vector(
            local_incept_feat, query_words, gamma1
        )  # Taken from attnGAN paper. shape: (batch, D, L)

        query_words = query_words.transpose(1, 2)  # shape: (batch, L, D)
        c_i = c_i.transpose(1, 2)  # shape: (batch, L, D)
        query_words = query_words.reshape(
            batch_size * numb_words, -1
        )  # shape: (batch * L, D)
        c_i = c_i.reshape(batch_size * numb_words, -1)  # shape: (batch * L, D)

        r_i = compute_relevance(
            c_i, query_words
        )  # cosine similarity, or R(c_i, e_i) from attnGAN paper. shape: (batch * L, 1)
        r_i = r_i.view(batch_size, numb_words)  # shape: (batch, L)
        r_i = torch.exp(r_i * gamma2)  # shape: (batch, L)
        r_i = r_i.sum(dim=1, keepdim=True)  # shape: (batch, 1)
        r_i = torch.log(
            r_i
        )  # This is image-text matching score b/w whole image and caption, shape: (batch, 1)
        match_scores.append(r_i)

    masks = torch.cat(masks, dim=0).bool()  # type: ignore
    match_scores = torch.cat(match_scores, dim=1)  # type: ignore

    # This corresponds to P(D|Q) from attnGAN.
    match_scores = gamma3 * match_scores  # type: ignore
    match_scores.data.masked_fill_(  # type: ignore
        masks, -float("inf")
    )  # mask out the scores for mis-matched samples

    match_scores_t = match_scores.transpose(  # type: ignore
        0, 1
    )  # This corresponds to P(Q|D) from attnGAN.

    # This corresponds to L1_w from attnGAN.
    l1_w = nn.CrossEntropyLoss()(match_scores, match_labels)
    # This corresponds to L2_w from attnGAN.
    l2_w = nn.CrossEntropyLoss()(match_scores_t, match_labels)

    incept_feat_norm = torch.linalg.norm(global_incept_feat, dim=1)
    sent_emb_norm = torch.linalg.norm(sent_emb, dim=1)

    # shape: (batch, batch)
    global_match_score = global_incept_feat @ (sent_emb.T)

    global_match_score = (
        global_match_score / torch.outer(incept_feat_norm, sent_emb_norm)
    ).clamp(min=1e-8)
    global_match_score = gamma3 * global_match_score

    # mask out the scores for mis-matched samples
    global_match_score.data.masked_fill_(masks, -float("inf"))  # type: ignore

    global_match_t = global_match_score.T  # shape: (batch, batch)

    # This corresponds to L1_s from attnGAN.
    l1_s = nn.CrossEntropyLoss()(global_match_score, match_labels)
    # This corresponds to L2_s from attnGAN.
    l2_s = nn.CrossEntropyLoss()(global_match_t, match_labels)

    loss_damsm = lambda3 * (l1_w + l2_w + l1_s + l2_s)

    return loss_damsm


def compute_relevance(c_i: torch.Tensor, query_words: torch.Tensor) -> Any:
    """Computes the cosine similarity between the region context vector and the query words.

    Args:
        c_i: The region context vector. shape: (batch * L, D)
        query_words: The query words. shape: (batch * L, D)
    """
    prod = c_i * query_words  # shape: (batch * L, D)
    numr = torch.sum(prod, dim=1)  # shape: (batch * L, 1)
    norm_c = torch.linalg.norm(c_i, ord=2, dim=1)
    norm_q = torch.linalg.norm(query_words, ord=2, dim=1)
    denr = norm_c * norm_q
    r_i = (numr / denr).clamp(min=1e-8).squeeze()  # shape: (batch * L, 1)
    return r_i


def compute_region_context_vector(
    local_incept_feat: torch.Tensor, query_words: torch.Tensor, gamma1: float
) -> Any:
    """Compute the region context vector (c_i) from attnGAN paper.

    Args:
        local_incept_feat: The local inception features. [shape: (batch, D, 17, 17)]
        query_words: The embeddings for all the words in the captions. shape: (batch, D, L)
        gamma1: The gamma1 value from attnGAN paper.
    """
    batch, L = query_words.size(0), query_words.size(2)  # pylint: disable=invalid-name

    feat_height, feat_width = local_incept_feat.size(2), local_incept_feat.size(3)
    N = feat_height * feat_width  # pylint: disable=invalid-name

    # Reshape the local inception features to (batch, D, N)
    local_incept_feat = local_incept_feat.view(batch, -1, N)
    # shape: (batch, N, D)
    incept_feat_t = local_incept_feat.transpose(1, 2)

    sim_matrix = incept_feat_t @ query_words  # shape: (batch, N, L)
    sim_matrix = sim_matrix.view(batch * N, L)  # shape: (batch * N, L)

    sim_matrix = nn.Softmax(dim=1)(sim_matrix)  # shape: (batch * N, L)
    sim_matrix = sim_matrix.view(batch, N, L)  # shape: (batch, N, L)

    sim_matrix = torch.transpose(sim_matrix, 1, 2)  # shape: (batch, L, N)
    sim_matrix = sim_matrix.reshape(batch * L, N)  # shape: (batch * L, N)

    alpha_j = gamma1 * sim_matrix  # shape: (batch * L, N)
    alpha_j = nn.Softmax(dim=1)(alpha_j)  # shape: (batch * L, N)
    alpha_j = alpha_j.view(batch, L, N)  # shape: (batch, L, N)
    alpha_j_t = torch.transpose(alpha_j, 1, 2)  # shape: (batch, N, L)

    c_i = (
        local_incept_feat @ alpha_j_t
    )  # shape: (batch, D, L) [summing over N dimension in paper, so we multiply like this]
    return c_i


def discriminator_loss(
    logits: Dict[str, Dict[str, torch.Tensor]],
    labels: Dict[str, Dict[str, torch.Tensor]],
) -> Any:
    """
    Calculate discriminator objective

    :param dict[str, dict[str, torch.Tensor]] logits:
        Dictionary with fake/real and word-level/uncond/cond logits

        Example:

        logits = {
            "fake": {
                "word_level": torch.Tensor (BxL)
                "uncond": torch.Tensor (Bx1)
                "cond": torch.Tensor (Bx1)
            },
            "real": {
                "word_level": torch.Tensor (BxL)
                "uncond": torch.Tensor (Bx1)
                "cond": torch.Tensor (Bx1)
            },
        }
    :param dict[str, dict[str, torch.Tensor]] labels:
        Dictionary with fake/real and word-level/image labels

        Example:

        labels = {
            "fake": {
                "word_level": torch.Tensor (BxL)
                "image": torch.Tensor (Bx1)
            },
            "real": {
                "word_level": torch.Tensor (BxL)
                "image": torch.Tensor (Bx1)
            },
        }
    :param float lambda_4: Hyperparameter for word loss in paper
    :return: Discriminator objective loss
    :rtype: Any
    """
    # define main loss functions for logit losses
    tot_loss = 0.0
    bce_logits = nn.BCEWithLogitsLoss()
    bce = nn.BCELoss()
    # calculate word-level loss
    word_loss = bce(logits["real"]["word_level"], labels["real"]["word_level"])
    # calculate unconditional adversarial loss
    uncond_loss = bce_logits(logits["real"]["uncond"], labels["real"]["image"])

    # calculate conditional adversarial loss
    cond_loss = bce_logits(logits["real"]["cond"], labels["real"]["image"])

    tot_loss = (uncond_loss + cond_loss) / 2.0

    fake_uncond_loss = bce_logits(logits["fake"]["uncond"], labels["fake"]["image"])
    fake_cond_loss = bce_logits(logits["fake"]["cond"], labels["fake"]["image"])

    tot_loss += (fake_uncond_loss + fake_cond_loss) / 3.0
    tot_loss += word_loss

    return tot_loss


def kl_loss(mu_tensor: torch.Tensor, logvar: torch.Tensor) -> Any:
    """
    Calculate KL loss

    :param torch.Tensor mu_tensor: Mean of latent distribution
    :param torch.Tensor logvar: Log variance of latent distribution
    :return: KL loss [-0.5 * (1 + log(sigma) - mu^2 - sigma^2)]
    :rtype: Any
    """
    return torch.mean(-0.5 * (1 + 0.5 * logvar - mu_tensor.pow(2) - torch.exp(logvar)))