detrjs / index.js
MJ106's picture
Update index.js
2006ecf verified
raw
history blame
2.9 kB
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
// Since we will download the model from the Hugging Face Hub, we can skip the local model check
env.allowLocalModels = false;
// Reference the elements that we will need
const status = document.getElementById('status');
const fileUpload = document.getElementById('upload');
const imageContainer = document.getElementById('container');
const example = document.getElementById('example');
const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';
// Create a new object detection pipeline
status.textContent = 'Loading model...';
// To-Do #1 pipeline API를 사용하여 detr-resnet-50 object detection 모델의 instance를 detector라는 이름을 붙여 생성하십시오.
// DETR 모델 참고 문서 https://huggingface.co/facebook/detr-resnet-50
const detector = await pipeline ("objectDetection", "detr-resnet-50");
status.textContent = 'Ready';
example.addEventListener('click', (e) => {
e.preventDefault();
detect(EXAMPLE_URL);
});
fileUpload.addEventListener('change', function (e) {
const file = e.target.files[0];
if (!file) {
return;
}
const reader = new FileReader();
// Set up a callback when the file is loaded
reader.onload = e2 => detect(e2.target.result);
reader.readAsDataURL(file);
});
// Detect objects in the image
async function detect(img) {
imageContainer.innerHTML = '';
imageContainer.style.backgroundImage = `url(${img})`;
status.textContent = 'Analysing...';
// To-Do #2 객체 탐지를 위한 오브젝트에 threshold를 0.5, percentage를 true로 지정하고 그 결과를 output에 저장하십시오
// threshold 값을 지정하고 쉼표를 붙이시오
// percentage 지정
const output = await detector(img.src, {
threshold: 0.5,
percentage: true,
};
status.textContent = '';
output.forEach(renderBox);
}
// Render a bounding box and label on the image
function renderBox({ box, label }) {
const { xmax, xmin, ymax, ymin } = box;
// Generate a random color for the box
const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0);
// Draw the box
const boxElement = document.createElement('div');
boxElement.className = 'bounding-box';
Object.assign(boxElement.style, {
borderColor: color,
left: 100 * xmin + '%',
top: 100 * ymin + '%',
width: 100 * (xmax - xmin) + '%',
height: 100 * (ymax - ymin) + '%',
})
// Draw label
const labelElement = document.createElement('span');
labelElement.textContent = label;
labelElement.className = 'bounding-box-label';
labelElement.style.backgroundColor = color;
boxElement.appendChild(labelElement);
imageContainer.appendChild(boxElement);
}