File size: 4,233 Bytes
5fdbc81
 
 
 
 
13f97c3
 
 
5fdbc81
13f97c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fdbc81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

import mne
import streamlit as st
import matplotlib.pyplot as plt

from braindecode import EEGClassifier
from braindecode.models import Deep4Net,ShallowFBCSPNet,EEGNetv4, TCN
from braindecode.training.losses import CroppedLoss

import torch
import numpy as np

def set_button_state(output,col):
        # Generate a random output value of 0 or 1
    # output = 2023 #random.randint(0, 1)

    # Store the output value in session state
    st.session_state.output = output

    # Define the button color and text based on the output value
    if st.session_state.output == 0:
        button_color = "green"
        button_text = "Normal"
    elif st.session_state.output == 1:
        button_color = "red"
        button_text = "Abnormal"
    # elif st.session_state.output == 3:
    #     button_color = "yellow"
    #     button_text = "Waiting"
    else:
        button_color = "gray"
        button_text = "Unknown"

    # Create a custom HTML button with CSS styling
    col.markdown(f"""
    <style>
    .custom-button {{
        background-color: {button_color};
        color: black;
        padding: 10px 20px;
        border: none;
        border-radius: 5px;
        cursor: pointer;
    }}
    </style>
    <button class="custom-button">Output: {button_text}</button>
    """, unsafe_allow_html=True)


def predict(raw,clf):
    x = np.expand_dims(raw.get_data()[:21, :6000], axis=0)
    output = clf.predict(x)
    return output


def build_model(model_name, n_classes, n_chans, input_window_samples, drop_prob=0.5, lr=0.01):#, weight_decay, batch_size, n_epochs, wandb_run, checkpoint, optimizer__param_groups, window_train_set, window_val):
    n_start_chans = 25
    final_conv_length = 1
    n_chan_factor = 2
    stride_before_pool = True
    # input_window_samples =6000
    model = Deep4Net(
                n_chans, n_classes,
                n_filters_time=n_start_chans,
                n_filters_spat=n_start_chans,
                input_window_samples=input_window_samples,
                n_filters_2=int(n_start_chans * n_chan_factor),
                n_filters_3=int(n_start_chans * (n_chan_factor ** 2.0)),
                n_filters_4=int(n_start_chans * (n_chan_factor ** 3.0)),
                final_conv_length=final_conv_length,
                stride_before_pool=stride_before_pool,
                drop_prob=drop_prob)
     
    clf = EEGClassifier(
            model,
            cropped=True,
            criterion=CroppedLoss,
            # criterion=CroppedLoss_sd,
            criterion__loss_function=torch.nn.functional.nll_loss,
            optimizer=torch.optim.AdamW,
            optimizer__lr=lr,
            iterator_train__shuffle=False,
            # iterator_train__sampler = ImbalancedDatasetSampler(window_train_set, labels=window_train_set.get_metadata().target),
            # batch_size=batch_size,
            callbacks=[
                # EarlyStopping(patience=5),
                # StochasticWeightAveraging(swa_utils, swa_start=1, verbose=1, swa_lr=lr),
                # "accuracy", "balanced_accuracy","f1",("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
                # checkpoint,
                ],  #"accuracy",
            # device='cuda'
            )
    clf.initialize()
    pt_path = './Deep4Net_trained_tuh_scaling_wN_WAug_DefArgs_index8_number2700_state_dict_100.pt'
    clf.load_params(f_params=pt_path)
    
    return clf
    

def preprocessing_and_plotting(raw):
    # Select the first channel
    channel = raw.ch_names[0]
    st.write(f"Selected channel: {channel}")

    # Plot the first channel
    fig, ax = plt.subplots()
    ax.plot(raw.times, raw[channel][0].T)
    ax.set_xlabel("Time (s)")
    ax.set_ylabel("Amplitude (µV)")
    ax.set_title(f"EEG signal of {channel}")
    st.pyplot(fig)

def read_file(edf_file):
    # To read file as bytes:
    bytes_data = edf_file.getvalue()
    # Open a file named "output.bin" in the current directory in write binary mode
    with open('edf_file.edf', "wb") as f:
        # Write the bytes data to the file
        f.write(bytes_data)
    
    raw = mne.io.read_raw_edf('edf_file.edf')
    st.write(f"Loaded {edf_file.name} with {raw.info['nchan']} channels")
    return raw