Spaces:
Sleeping
Sleeping
from smolagents import Tool | |
from typing import Any, Optional | |
class SimpleTool(Tool): | |
name = "advanced_web_analyzer" | |
description = "Advanced web content analyzer with ML-powered analysis capabilities." | |
inputs = {"url":{"type":"string","description":"The webpage URL to analyze."},"analysis_mode":{"type":"string","nullable":True,"description":"Analysis mode ('analyze', 'search', 'summarize', 'sentiment', 'topics')."},"query":{"type":"string","nullable":True,"description":"Optional search term for 'search' mode."},"language":{"type":"string","nullable":True,"description":"Content language (default: 'en')."}} | |
output_type = "string" | |
def forward(self, url: str, | |
analysis_mode: str = "analyze", | |
query: Optional[str] = None, | |
language: str = "en") -> str: | |
"""Advanced web content analyzer with ML-powered analysis capabilities. | |
Args: | |
url: The webpage URL to analyze. | |
analysis_mode: Analysis mode ('analyze', 'search', 'summarize', 'sentiment', 'topics'). | |
query: Optional search term for 'search' mode. | |
language: Content language (default: 'en'). | |
Returns: | |
str: Advanced analysis of web content. | |
""" | |
import requests | |
from bs4 import BeautifulSoup | |
from urllib.parse import urlparse | |
import re | |
from collections import Counter | |
from transformers import pipeline | |
try: | |
# Validate URL | |
parsed_url = urlparse(url) | |
if not all([parsed_url.scheme, parsed_url.netloc]): | |
return "Error: Invalid URL format. Please provide a valid URL." | |
# Fetch webpage | |
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)'} | |
response = requests.get(url, headers=headers, timeout=10) | |
response.raise_for_status() | |
# Parse content | |
soup = BeautifulSoup(response.text, 'html.parser') | |
for tag in soup(['script', 'style', 'meta']): | |
tag.decompose() | |
# Extract basic elements | |
title = soup.title.string if soup.title else "No title found" | |
title = re.sub(r'\s+', ' ', title).strip() if title else "No title found" | |
text_content = soup.get_text() | |
text_content = re.sub(r'\s+', ' ', text_content).strip() | |
# Process based on mode | |
if analysis_mode == "analyze": | |
# Initialize ML pipelines | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
classifier = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment") | |
# Get word statistics | |
words = text_content.lower().split() | |
word_count = len(words) | |
word_freq = Counter(words).most_common(5) | |
common_words = "" | |
for word, count in word_freq: | |
common_words += f"- {word}: {count} times\n" | |
# Get summary | |
summary = summarizer(text_content[:1024], max_length=100, min_length=30)[0]['summary_text'] | |
# Get sentiment | |
sentiment = classifier(text_content[:512])[0] | |
sentiment_score = int(sentiment['label'][0]) # Convert '5 stars' to number | |
sentiment_desc = ["Very Negative", "Negative", "Neutral", "Positive", "Very Positive"][sentiment_score-1] | |
# Format comprehensive analysis | |
return f"""π Comprehensive Content Analysis | |
π Basic Information: | |
Title: {title} | |
Word Count: {word_count} | |
Reading Time: {word_count // 200} minutes | |
π Quick Summary: | |
{summary} | |
π Content Sentiment: | |
{sentiment_desc} ({sentiment_score}/5 stars) | |
π Most Common Words: | |
{common_words}""" | |
elif analysis_mode == "summarize": | |
# Use BART for better summarization | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
# Split into chunks if text is too long | |
chunks = [text_content[i:i+1024] for i in range(0, len(text_content), 1024)] | |
summaries = [] | |
for chunk in chunks[:3]: # Process up to 3 chunks | |
if len(chunk.strip()) > 100: | |
summary = summarizer(chunk, max_length=100, min_length=30)[0]['summary_text'] | |
summaries.append(summary) | |
return f"""π Content Summary for: {title} | |
{' '.join(summaries)}""" | |
elif analysis_mode == "sentiment": | |
# Use multilingual sentiment analyzer | |
classifier = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment") | |
# Analyze main content and paragraphs | |
main_sentiment = classifier(text_content[:512])[0] | |
# Analyze individual paragraphs | |
paragraphs = soup.find_all('p') | |
detailed_sentiments = "" | |
para_count = 0 | |
for p in paragraphs: | |
text = p.text.strip() | |
if len(text) > 50: # Only analyze meaningful paragraphs | |
sentiment = classifier(text[:512])[0] | |
score = int(sentiment['label'][0]) | |
mood = ["Very Negative", "Negative", "Neutral", "Positive", "Very Positive"][score-1] | |
detailed_sentiments += f"\nParagraph {para_count + 1}: {mood} ({score}/5)" | |
para_count += 1 | |
if para_count >= 5: # Limit to 5 paragraphs | |
break | |
return f"""π Sentiment Analysis | |
Overall Sentiment: {["Very Negative", "Negative", "Neutral", "Positive", "Very Positive"][int(main_sentiment['label'][0])-1]} | |
Overall Score: {main_sentiment['label'][0]}/5 | |
Detailed Analysis:{detailed_sentiments}""" | |
elif analysis_mode == "topics": | |
# Use Zero-shot classification for topic detection | |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
# Define potential topics | |
topics = [ | |
"Technology", "Business", "Politics", "Science", | |
"Health", "Entertainment", "Sports", "Education", | |
"Environment", "Culture" | |
] | |
# Analyze main content | |
topic_results = classifier(text_content[:512], topics) | |
# Format results | |
topic_analysis = "Main Topics:\n" | |
for topic, score in zip(topic_results['labels'], topic_results['scores']): | |
if score > 0.1: # Only show relevant topics | |
topic_analysis += f"- {topic}: {score*100:.1f}% confidence\n" | |
# Get key phrases | |
from keybert import KeyBERT | |
kw_model = KeyBERT() | |
keywords = kw_model.extract_keywords(text_content[:5000], keyphrase_ngram_range=(1, 2), stop_words='english', top_n=5) | |
key_phrases = "\nKey Phrases:\n" | |
for phrase, score in keywords: | |
key_phrases += f"- {phrase}: {score:.2f} relevance\n" | |
return f"""π― Topic Analysis | |
{topic_analysis} | |
{key_phrases}""" | |
elif analysis_mode == "search": | |
if not query: | |
return "Error: Search query is required for search mode." | |
# Use transformers for better search | |
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad") | |
# Search in paragraphs | |
paragraphs = soup.find_all('p') | |
search_results = "" | |
result_count = 0 | |
for p in paragraphs: | |
text = p.text.strip() | |
if len(text) > 50 and query.lower() in text.lower(): | |
# Get AI-enhanced answer | |
qa_result = qa_pipeline(question=query, context=text) | |
search_results += f"\n{result_count + 1}. Found in context: {qa_result['answer']}\n" | |
search_results += f" Confidence: {qa_result['score']:.2%}\n" | |
search_results += f" Full context: {text}\n" | |
result_count += 1 | |
if result_count >= 3: | |
break | |
if not search_results: | |
return f"No matches found for '{query}'" | |
return f"""π AI-Enhanced Search Results for '{query}': | |
{search_results}""" | |
else: | |
return f"Error: Unknown mode '{analysis_mode}'" | |
except Exception as e: | |
return f"Error processing webpage: {str(e)}" |