import streamlit as st import pandas as pd import numpy as np from streamlit_echarts import st_echarts from streamlit.components.v1 import html # from PIL import Image from app.show_examples import * import pandas as pd # huggingface_image = Image.open('style/huggingface.jpg') # other info #path = "./AudioBench-Leaderboard/additional_info/Leaderboard-Rename.xlsx" path = "./additional_info/Leaderboard-Rename.xlsx" info_df = pd.read_excel(path) # def nav_to(value): # try: # url = links_dic[str(value).lower()] # js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);' # st_javascript(js) # except: # pass def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True): folder = f"./results/{metrics}/" display_names = { 'SU': 'Speech Understanding', 'ASU': 'Audio Scene Understanding', 'VU': 'Voice Understanding' } data_path = f'{folder}/{category_name.lower()}.csv' chart_data = pd.read_csv(data_path).round(3) new_dataset_name = dataset_name.replace('-', '_').lower() chart_data = chart_data[['Model', new_dataset_name]] st.markdown(""" """, unsafe_allow_html=True) # remap model names display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['AudioBench'], info_df['Proper Display Name'])} chart_data['model_show'] = chart_data['Model'].map(display_model_names) models = st.multiselect("Please choose the model", sorted(chart_data['model_show'].tolist()), default = sorted(chart_data['model_show'].tolist()), ) chart_data = chart_data[chart_data['model_show'].isin(models)] chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=cus_sort).dropna(axis=0) if len(chart_data) == 0: return # Get Values data_values = chart_data.iloc[:, 1] # Calculate Q1 and Q3 q1 = data_values.quantile(0.25) q3 = data_values.quantile(0.75) # Calculate IQR iqr = q3 - q1 # Define lower and upper bounds (1.5*IQR is a common threshold) lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr # Filter data within the bounds filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)] # Calculate min and max values after outlier handling min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3) max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3) options = { #"title": {"text": f"{display_names[folder_name.upper()]}"}, "title": {"text": f"{dataset_name}"}, "tooltip": { "trigger": "axis", "axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}}, "triggerOn": 'mousemove', }, "legend": {"data": ['Overall Accuracy']}, "toolbox": {"feature": {"saveAsImage": {}}}, "grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True}, "xAxis": [ { "type": "category", "boundaryGap": True, "triggerEvent": True, "data": chart_data['model_show'].tolist(), } ], "yAxis": [{"type": "value", "min": min_value, "max": max_value, "boundaryGap": True # "splitNumber": 10 }], "series": [{ "name": f"{dataset_name}", "type": "bar", "data": chart_data[f'{new_dataset_name}'].tolist(), }], } events = { "click": "function(params) { return params.value }" } value = st_echarts(options=options, events=events, height="500px") # if value != None: # # print(value) # nav_to(value) # if value != None: # highlight_table_line(value) ''' Show table ''' # st.divider() with st.container(): # st.write("") st.markdown('##### Results') # custom_css = """ # """ # st.markdown(custom_css, unsafe_allow_html=True) model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])} chart_data['model_link'] = chart_data['model_show'].map(model_link) chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]] cur_dataset_name = chart_data_table.columns[1] print(cur_dataset_name) if cur_dataset_name in [ 'librispeech_test_clean', 'librispeech_test_other', 'common_voice_15_en_test', 'peoples_speech_test', 'gigaspeech_test', 'earnings21_test', 'earnings22_test', 'tedlium3_test', 'tedlium3_long_form_test', 'imda_part1_asr_test', 'imda_part2_asr_test', 'aishell_asr_zh_test', ]: styled_df = chart_data_table.style.highlight_min( subset=[chart_data_table.columns[1]], color='yellow' ) else: chart_data_table = chart_data_table.sort_values( by=chart_data_table.columns[1], ascending=False ).reset_index(drop=True) styled_df = chart_data_table.style.highlight_max( subset=[chart_data_table.columns[1]], color='yellow' ) st.dataframe( styled_df, column_config={ 'model_show': 'Model', chart_data_table.columns[1]: {'alignment': 'left'}, "model_link": st.column_config.LinkColumn( "Model Link", # # # help="", # validate=r"^https://(.*?)$", # # max_chars=100, # display_text=r"\[(.*?)\]" ), }, hide_index=True, use_container_width=True ) # s = '' # for model in models: # try: # #
MODEL | #{dataset_name} | #
---|