import streamlit as st from app.draw_diagram import * def dashboard(): with st.container(): st.title("AudioBench") st.markdown(""" [gh]: https://github.com/AudioLLMs/AudioBench [![GitHub watchers](https://img.shields.io/github/watchers/AudioLLMs/AudioBench?style=social)][gh] [![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/AudioBench?style=social)][gh] """) audio_url = "https://arxiv.org/abs/2406.16020" st.divider() st.markdown("#### [AudioBench](%s)" % audio_url) st.markdown("##### :dizzy: A comprehensive evaluation benchmark designed for general instruction-following audiolanguage models") st.markdown(''' ''') with st.container(): left_co, center_co, right_co = st.columns([0.5,1, 0.5]) with center_co: st.image("./style/audio_overview.png", caption="Overview of the datasets in AudioBench.", use_column_width = True) st.markdown(''' ''') st.markdown("###### :dart: Our Benchmark includes: ") cols = st.columns(10) cols[1].metric(label="Tasks", value="8", delta="Tasks", delta_color="off") cols[2].metric(label="Datasets", value="26", delta="Datasets", delta_color="off") cols[3].metric(label="Test On", value="4", delta="Models", delta_color="off") # st.markdown("###### :dart: Supported Models and Datasets: ") # sup = pd.DataFrame( # {"Dataset": "LibriSpeech-Clean", # "Category": st.selectbox('category', ['Speech Understanding']), # "Task": st.selectbox('task', ['Automatic Speech Recognition']), # "Metrics": st.selectbox('metrics', ['WER']), # "Status":True} # ) # st.data_editor(sup, num_rows="dynamic") st.divider() with st.container(): st.markdown("##### Citations") st.markdown(''' :round_pushpin: AudioBench Paper \n @article{wang2024audiobench, title={AudioBench: A Universal Benchmark for Audio Large Language Models}, author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F}, journal={arXiv preprint arXiv:2406.16020}, year={2024} } ''') def speech_understanding(): st.title("Speech Understanding") filters_levelone = ['ASR', 'SQA', 'SI'] sort_leveltwo = [] left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) with left: filter_1 = st.selectbox('Select Category', filters_levelone) with middle: if filter_1 == filters_levelone[0]: sort_leveltwo = ['LibriSpeech-Test-Clean', 'LibriSpeech-Test-Other', 'Common-Voice-15-En-Test', 'Peoples-Speech-Test', 'GigaSpeech-Test', 'Tedlium3-Test','Tedlium3-Longform-Test', 'Earning-21-Test', 'Earning-22-Test'] elif filter_1 == filters_levelone[1]: sort_leveltwo = ['CN-College-Listen-Test', 'SLUE-P2-SQA5-Test', 'DREAM-TTS-Test', 'Public-SG-SpeechQA-Test'] elif filter_1 == filters_levelone[2]: sort_leveltwo = ['OpenHermes-Audio-Test', 'ALPACA-Audio-Test'] sort = st.selectbox("Sort Dataset", sort_leveltwo) with right: sorted = st.selectbox('by', ['Ascending', 'Descending']) if filter_1 or sort or sorted: draw('su',filter_1, sort, sorted) else: draw('su', 'ASR', 'LibriSpeech-Test-Clean', 'Descending') def audio_scene_understanding(): st.title("Audio Scence Understanding") filters_levelone = ['AQA', 'AC'] sort_leveltwo = [] left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) with left: filter_1 = st.selectbox('Select Category', filters_levelone) with middle: if filter_1 == filters_levelone[0]: sort_leveltwo = ['Clotho-AQA-Test', 'WavCaps-QA-Test', 'AudioCaps-QA-Test'] elif filter_1 == filters_levelone[1]: sort_leveltwo = ['WavCaps-Test', 'AudioCaps-Test'] sort = st.selectbox("Sort Dataset", sort_leveltwo) with right: sorted = st.selectbox('by', ['Ascending', 'Descending']) if filter_1 or sort or sorted: draw('asu',filter_1, sort, sorted) else: draw('asu', 'AQA', 'Clotho-AQA-Test', 'Descending') def voice_understanding(): st.title("Voice Understanding") filters_levelone = ['ER', 'AR', 'GR'] sort_leveltwo = [] left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) with left: filter_1 = st.selectbox('Select Category', filters_levelone) with middle: if filter_1 == filters_levelone[0]: sort_leveltwo = ['IEMOCAP-Emotion-Test', 'MELD-Sentiment-Test', 'MELD-Emotion-Test'] elif filter_1 == filters_levelone[1]: sort_leveltwo = ['VoxCeleb1-Accent-Test'] elif filter_1 == filters_levelone[2]: sort_leveltwo = ['VoxCeleb1-Gender-Test', 'IEMOCAP-Gender-Test'] sort = st.selectbox("Sort Dataset", sort_leveltwo) with right: sorted = st.selectbox('by', ['Ascending', 'Descending']) if filter_1 or sort or sorted: draw('vu',filter_1, sort, sorted) else: draw('vu', 'ER', 'IEMOCAP-Emotion-Test', 'Descending')