import streamlit as st import pandas as pd import numpy as np from streamlit_echarts import st_echarts from streamlit.components.v1 import html # from PIL import Image from app.show_examples import * import pandas as pd # huggingface_image = Image.open('style/huggingface.jpg') # other info #path = "./AudioBench-Leaderboard/additional_info/Leaderboard-Rename.xlsx" path = "./additional_info/Leaderboard-Rename.xlsx" info_df = pd.read_excel(path) # def nav_to(value): # try: # url = links_dic[str(value).lower()] # js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);' # st_javascript(js) # except: # pass def draw(folder_name, category_name, dataset_name, metrics): folder = f"./results/{metrics}/" display_names = { 'SU': 'Speech Understanding', 'ASU': 'Audio Scene Understanding', 'VU': 'Voice Understanding' } data_path = f'{folder}/{category_name.lower()}.csv' chart_data = pd.read_csv(data_path).round(3) new_dataset_name = dataset_name.replace('-', '_').lower() chart_data = chart_data[['Model', new_dataset_name]] st.markdown(""" """, unsafe_allow_html=True) # remap model names display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['AudioBench'], info_df['Proper Display Name'])} chart_data['Model'] = chart_data['Model'].map(display_model_names) models = st.multiselect("Please choose the model", sorted(chart_data['Model'].tolist()), default = sorted(chart_data['Model'].tolist())) chart_data = chart_data[chart_data['Model'].isin(models)] chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=True).dropna(axis=0) if len(chart_data) == 0: return min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1*chart_data.iloc[:, 1::].min().min(), 1) max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1*chart_data.iloc[:, 1::].max().max(), 1) options = { "title": {"text": f"{display_names[folder_name.upper()]}"}, "tooltip": { "trigger": "axis", "axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}}, "triggerOn": 'mousemove', }, "legend": {"data": ['Overall Accuracy']}, "toolbox": {"feature": {"saveAsImage": {}}}, "grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True}, "xAxis": [ { "type": "category", "boundaryGap": True, "triggerEvent": True, "data": chart_data['Model'].tolist(), } ], "yAxis": [{"type": "value", "min": min_value, "max": max_value, "boundaryGap": True # "splitNumber": 10 }], "series": [{ "name": f"{dataset_name}", "type": "bar", "data": chart_data[f'{new_dataset_name}'].tolist(), }], } events = { "click": "function(params) { return params.value }" } value = st_echarts(options=options, events=events, height="500px") # if value != None: # # print(value) # nav_to(value) # if value != None: # highlight_table_line(value) ''' Show table ''' # st.divider() with st.container(): # st.write("") st.markdown('##### TABLE') custom_css = """ """ st.markdown(custom_css, unsafe_allow_html=True) model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])} s = '' for model in models: try: # s += f""" {model} {chart_data[chart_data['Model'] == model][new_dataset_name].tolist()[0]} """ except: # print(f"{model} is not in {dataset_name}") continue # select all function select_all_function = """""" st.markdown(f"""
{select_all_function}
""", unsafe_allow_html=True) info_body_details = f""" {s}
MODEL {dataset_name}
""" # # html_code = custom_css + select_all_function + info_body_details # html(html_code, height = 300) st.markdown(f"""
{info_body_details}
""", unsafe_allow_html=True) # st.dataframe(chart_data, # # column_config = { # # "Link": st.column_config.LinkColumn( # # display_text= st.image(huggingface_image) # # ), # # }, # hide_index = True, # use_container_width=True) ''' show samples ''' if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Long-form-Test']: pass else: show_examples(category_name, dataset_name, chart_data['Model'].tolist())