import streamlit as st
import datasets
import numpy as np
def show_examples(category_name, dataset_name, model_lists):
st.divider()
sample_folder = f"./examples/{category_name}/{dataset_name}"
dataset = datasets.load_from_disk(sample_folder)
for index in range(len(dataset)):
with st.container():
st.markdown(f'##### EXAMPLE {index+1}')
col1, col2 = st.columns([0.3, 0.7], vertical_alignment="center")
# with col1:
st.audio(f'{sample_folder}/sample_{index}.wav', format="audio/wav")
# with col2:
# with st.container():
# custom_css = """
#
# """
# st.markdown(custom_css, unsafe_allow_html=True)
# if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
# choices = dataset[index]['other_attributes']['choices']
# if isinstance(choices, str):
# choices_text = choices
# elif isinstance(choices, list):
# choices_text = ' '.join(i for i in choices)
# question_text = f"""
#
QUESTION: {dataset[index]['instruction']['text']}
#
CHOICES: {choices_text}
#
# """
# else:
# question_text = f"""
#
QUESTION: {dataset[index]['instruction']['text']}
#
"""
# st.markdown(question_text, unsafe_allow_html=True)
# with st.container():
# custom_css = """
#
# """
# st.markdown(custom_css, unsafe_allow_html=True)
# st.markdown(f"""
#
CORRECT ANSWER: {dataset[index]['answer']['text']}
#
""", unsafe_allow_html=True)
if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
choices = dataset[index]['other_attributes']['choices']
if isinstance(choices, str):
choices_text = choices
elif isinstance(choices, list):
choices_text = ' '.join(i for i in choices)
question_text = f"""{dataset[index]['instruction']['text']} {choices_text}"""
else:
question_text = f"""{dataset[index]['instruction']['text']}"""
# st.divider()
with st.container():
custom_css = """
"""
st.markdown(custom_css, unsafe_allow_html=True)
model_lists.sort()
s = f"""
Reference |
{question_text} |
{dataset[index]['answer']['text']} |
"""
if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
for model in model_lists:
try:
s += f"""
{model} |
{dataset[index][model]['text']} {choices_text} |
{dataset[index][model]['model_prediction']} |
"""
except:
print(f"{model} is not in {dataset_name}")
continue
else:
for model in model_lists:
try:
s += f"""
{model} |
{dataset[index][model]['text']} |
{dataset[index][model]['model_prediction']} |
"""
except:
print(f"{model} is not in {dataset_name}")
continue
# import pdb
# pdb.set_trace()
body_details = f"""
MODEL |
QUESTION |
MODEL PREDICTION |
{s}
"""
st.markdown(f"""
{body_details}
""", unsafe_allow_html=True)
st.text("")
st.divider()