Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
from src.diffusion.base.scheduling import * | |
class LinearScheduler(BaseScheduler): | |
def alpha(self, t) -> Tensor: | |
return (t).view(-1, 1, 1, 1) | |
def sigma(self, t) -> Tensor: | |
return (1-t).view(-1, 1, 1, 1) | |
def dalpha(self, t) -> Tensor: | |
return torch.full_like(t, 1.0).view(-1, 1, 1, 1) | |
def dsigma(self, t) -> Tensor: | |
return torch.full_like(t, -1.0).view(-1, 1, 1, 1) | |
# SoTA for ImageNet! | |
class GVPScheduler(BaseScheduler): | |
def alpha(self, t) -> Tensor: | |
return torch.cos(t * (math.pi / 2)).view(-1, 1, 1, 1) | |
def sigma(self, t) -> Tensor: | |
return torch.sin(t * (math.pi / 2)).view(-1, 1, 1, 1) | |
def dalpha(self, t) -> Tensor: | |
return -torch.sin(t * (math.pi / 2)).view(-1, 1, 1, 1) | |
def dsigma(self, t) -> Tensor: | |
return torch.cos(t * (math.pi / 2)).view(-1, 1, 1, 1) | |
def w(self, t): | |
return torch.sin(t)**2 | |
class ConstScheduler(BaseScheduler): | |
def w(self, t): | |
return torch.ones(1, 1, 1, 1).to(t.device, t.dtype) | |
from src.diffusion.ddpm.scheduling import VPScheduler | |
class VPBetaScheduler(VPScheduler): | |
def w(self, t): | |
return self.beta(t).view(-1, 1, 1, 1) | |