Spaces:
Running
on
Zero
Running
on
Zero
import os.path | |
import random | |
import torch | |
from torch.utils.data import Dataset | |
class RandomNDataset(Dataset): | |
def __init__(self, latent_shape=(4, 64, 64), num_classes=1000, selected_classes:list=None, seeds=None, max_num_instances=50000, ): | |
self.selected_classes = selected_classes | |
if selected_classes is not None: | |
num_classes = len(selected_classes) | |
max_num_instances = 10*num_classes | |
self.num_classes = num_classes | |
self.seeds = seeds | |
if seeds is not None: | |
self.max_num_instances = len(seeds)*num_classes | |
self.num_seeds = len(seeds) | |
else: | |
self.num_seeds = (max_num_instances + num_classes - 1) // num_classes | |
self.max_num_instances = self.num_seeds*num_classes | |
self.latent_shape = latent_shape | |
def __getitem__(self, idx): | |
label = idx // self.num_seeds | |
if self.selected_classes: | |
label = self.selected_classes[label] | |
seed = random.randint(0, 1<<31) #idx % self.num_seeds | |
if self.seeds is not None: | |
seed = self.seeds[idx % self.num_seeds] | |
# cls_dir = os.path.join(self.root, f"{label}") | |
filename = f"{label}_{seed}.png", | |
generator = torch.Generator().manual_seed(seed) | |
latent = torch.randn(self.latent_shape, generator=generator, dtype=torch.float32) | |
return latent, label, filename | |
def __len__(self): | |
return self.max_num_instances |