# YiTrans@IWSLT22 > [**YiTrans**](https://arxiv.org/abs/2206.05777) (```IWSLT 2022```): **The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task** > Code is being merged to this repository, thanks for your attention ## Setup ```bash git clone https://github.com/microsoft/SpeechT5.git git submodule update --init YiTrans/fairseq cd YiTrans/fairseq pip install -e . ``` ## Data Preparation ### Speech/ASR data for pre-training Please follow the steps of data preparation for HuBERT in [here](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert#data-preparation). ### Monolingual text data for pre-training Please follow the steps of data preparation for mBART in [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mbart). We reuse the multilingual vocabulary. After getting your subset.{idx,bin} files ready, renaming them as subset.lang.lang.{idx,bin}, e.g. ``` mono_deduped_filt_sort.en_XX.en_XX.bin mono_deduped_filt_sort.en_XX.en_XX.idx ``` ### Bilingual text data for pre-training The same way of preparing monolingual data with only the difference that you should prepare for both the source language and the target languages. Renaming them as subset.src-tgt.{src,tgt}.{idx,bin}, e.g. ``` mt8corpus_filt_slct.en_XX-de_DE.de_DE.bin mt8corpus_filt_slct.en_XX-de_DE.de_DE.idx mt8corpus_filt_slct.en_XX-de_DE.en_XX.bin mt8corpus_filt_slct.en_XX-de_DE.en_XX.idx ``` ### ST data for fine-tuning Please follow the steps of data preparation for S2T tasks [here](https://github.com/pytorch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md). Your tsv file should be like this: ``` id audio n_frames tgt_text speaker src_text src_lang tgt_lang ted_1_0 /mnt/speechdata/MUSTC/en-de/flac/ted_1_0.flac 25920 Hinter mir war gar keine Autokolonne. spk.1 There was no motorcade back there. en_XX de_DE ted_1_1 /mnt/speechdata/MUSTC/en-de/flac/ted_1_1.flac 219359 Haben Sie schon mal vom Phantomschmerz gehört? (Lachen) Wir saßen in einem gemieteten Ford Taurus. spk.1 (Laughter) You've heard of phantom limb pain? (Laughter) en_XX de_DE ted_1_2 /mnt/speechdata/MUSTC/en-de/flac/ted_1_2.flac 71360 Es war Zeit zum Abendessen und wir hielten Ausschau nach einem Restaurant. spk.1 It was dinnertime, and we started looking for a place to eat. en_XX de_DE ``` ## Pre-train For example of pre-training the PT36 model, please follow these steps: Step 0: Download the released [Hubert model](https://dl.fbaipublicfiles.com/hubert/hubert_large_ll60k.pt) and [mBART model](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.pretrained.tar.gz) model. Step 1: Pre-training with unlabeled speech data and monolingual/bilingual text data ```bash bash YiTrans/exp_scripts/pretrain/pretrain_pt36_adaptor_step1.sh ``` Step 2: Pre-training with ASR dat and domain-filtered bilingual text data ```bash bash YiTrans/exp_scripts/pretrain/pretrain_pt36_adaptor_step2.sh ``` Other configurations like training PT48 can also be fould in ./YiTrans/exp_scripts/pretrain, you might need to modify the PATH variables in .sh files to adjust your data. ## Fine-tune For example of pre-training En-De ST model on MuST-C dataset, ```bash bash YiTrans/exp_scripts/finetune_ST/en-de/jtst_pt36s2_mustc.sh ``` Other configurations like different translation directions or datasets could be found in ./YiTrans/exp_scripts/finetune_ST, you might need to modify the PATH variables in .sh files to adjust your data. ## Cascaded system You can also build a cascaded ST system (ASR+MT) with our codebase. 1. ASR model: fine-tune from the cascade of [Hubert Large](https://dl.fbaipublicfiles.com/hubert/hubert_large_ll60k.pt) and [mBART model](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.pretrained.tar.gz): ```bash # change the mbart_path/hubert_path to your own in the *.sh bash YiTrans/exp_scripts/finetune_ASR/finetune_hubert24_mbart24_en.sh ``` Check the [`.sh`](exp_scripts/finetune_ASR/finetune_hubert24_mbart24_en.sh) file for more information about the configuration. 2. MT model: fine-tune from [mBART model](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.pretrained.tar.gz): ```bash # change the mbart_path to your own in the *.sh bash YiTrans/exp_scripts/finetune_MT/finetune_mbart_en-de.sh ``` Check the [`.sh`](exp_scripts/finetune_MT/finetune_mbart_en-de.sh) file for more information about the configuration. ## Reference If you find our work is useful in your research, please cite the following paper: ```bibtex @article{Zhang2022Yitrans, title = {The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task}, author = {Zhang, Ziqiang and Ao, Junyi and Zhou, Long and Liu, Shujie and Wei, Furu and Li, Jinyu}, eprint={2206.05777}, archivePrefix={arXiv}, primaryClass={cs.CL}, year={2022} } ```