# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- import logging import os import sys from typing import Dict, List, Optional, Tuple from pathlib import Path import numpy as np from argparse import Namespace from collections import OrderedDict import torch from dataclasses import dataclass, field from fairseq.data import ( Dictionary, encoders, data_utils, StripTokenDataset, PrependTokenDataset, AppendTokenDataset, DenoisingDataset, ConcatDataset, FairseqDataset, iterators, ResamplingDataset, MaskTokensDataset, LanguagePairDataset, ) from fairseq.data.audio.speech_to_text_joint_dataset import S2TJointDataConfig from fairseq.data.shorten_dataset import maybe_shorten_dataset # from fairseq.data.encoders.utils import get_whole_word_mask from fairseq.dataclass.configs import FairseqDataclass from fairseq.tasks import register_task from fairseq.tasks.fairseq_task import FairseqTask from fairseq.dataclass.constants import ChoiceEnum from omegaconf import MISSING from speechlm.data.multimodal_corpus_dataset import MultiCorpusDataset from speechlm.data.load_langpair_dataset import load_langpair_dataset from speechlm.data.language_trible_dataset import LanguageTripleDataset, load_langtriple_dataset from speechlm.data.hubert_dataset import HubertDataset logger = logging.getLogger(__name__) TOKENIZER_CHOICES = ChoiceEnum(["sentencepiece", "hubert_letters", "none"]) def _lang_token(lang: str): return "".format(lang) def _lang_token_index(dic: Dictionary, lang: str): """Return language token index.""" idx = dic.index(_lang_token(lang)) assert idx != dic.unk_index, "cannot find language token for lang {}".format(lang) return idx class LabelEncoder(object): def __init__(self, dictionary: Dictionary) -> None: self.dictionary = dictionary def __call__(self, label: str) -> List[str]: return self.dictionary.encode_line( label, append_eos=False, add_if_not_exist=False, ) ### wrap the initial get_whole_word_mask which needs bpe_tokenizer, ### here we just assume words are splited by "|" or "" def get_whole_word_mask(args, dictionary): def is_beginning_of_word(i): if i < dictionary.nspecial: # special elements are always considered beginnings return True tok = dictionary[i] if tok.startswith("madeupword"): return True elif tok in ["", "", "", "", "|", ""]: return True else: return False mask_whole_words = torch.ByteTensor( list(map(is_beginning_of_word, range(len(dictionary)))) ) return mask_whole_words def get_repeative_start(tokens): """ tokens: torch.Tensor with repeative tokens """ length = len(tokens) rep_start_id = tokens[:-1] != tokens[1:] return torch.cat([torch.tensor([True]), rep_start_id]) @dataclass class TextPretrainingConfig(FairseqDataclass): ### added for joint pretraining text_data: Optional[str] = field( default=None, metadata={ "help": "if set, path to text data directory", }, ) seed: Optional[int] = field( default=1, metadata={ "help": "for ordered_indices in MulticorpusDataset", }, ) tokens_per_sample: Optional[int] = field( default=512, metadata={ "help": "max number of total tokens over all segments per sample for dataset", }, ) tokens_per_sample_tgt: Optional[int] = field( default=512, metadata={ "help": "max number of total tokens over all segments per target sample for dataset", }, ) sample_break_mode: Optional[str] = field( default="eos", metadata={ "help": "mode for breaking sentence", }, ) mask: Optional[float] = field( default=0.3, metadata={ "help": "fraction of words/subwords that will be masked", }, ) leave_unmasked_prob: float = field( default=0.1, metadata={"help": "probability that a masked token is unmasked"}, ) mask_random: Optional[float] = field( default=0.1, metadata={ "help": "instead of using [MASK], use random token this often", }, ) freq_weighted_replacement: bool = field( default=False, metadata={"help": "sample random replacement words based on word frequencies"}, ) mask_whole_words: bool = field( default=True, metadata={"help": "mask whole words; you may also want to set --bpe"}, ) mask_repeative_tokens: bool = field( default=True, metadata={"help": "mask repeative_tokens; if mask_whole_words=False"}, ) mask_multiple_length: int = field( default=1, metadata={"help": "repeat the mask indices multiple times"}, ) mask_stdev: float = field( default=0.0, metadata={"help": "stdev of the mask length"}, ) shorten_method: Optional[str] = field( default="none", metadata={ "help": "if not none, shorten sequences that exceed tokens_per_sample", "choices": "none/truncate/random_crop" }, ) shorten_data_split_list: Optional[str] = field( default="", metadata={ "help": "comma_separated list of dataset splits to apply shortening to, e.g., train,valid (default: all dataset splits)", }, ) ### below hypra-parameters is used in bart insert: Optional[float] = field( default=0.0, metadata={ "help": "insert this percentage of additional random tokens", }, ) permute: Optional[float] = field( default=0.0, metadata={ "help": "take this proportion of subwords and permute them", }, ) rotate: Optional[float] = field( default=0.0, metadata={ "help": "rotate this proportion of inputs", }, ) poisson_lambda: Optional[float] = field( default=3.5, metadata={ "help": "randomly shuffle sentences for this proportion of inputs", }, ) permute_sentences: Optional[float] = field( default=0.0, metadata={ "help": "shuffle this proportion of sentences in all inputs", }, ) mask_length: Optional[str] = field( default="span-poisson", metadata={ "help": "mask length to choose", "choice": "subword/word/span-poisson" }, ) replace_length: Optional[int] = field( default=1, metadata={ "help": "when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)", }, ) shuffle_instance: Optional[bool] = field( default=False, metadata={"help": "shuffle instance"}, ) max_source_positions: Optional[int] = field( default=1024, metadata={"help": "max number of tokens in the source sequence"}, ) max_target_positions: Optional[int] = field( default=1024, metadata={"help": "max number of tokens in the target sequence"}, ) bpe: Optional[str] = field( default="", metadata={ "help": "will wrapped by the text_data_config yaml", }, ) data_config: Optional[str] = field( default=None, metadata={ "help": "a config yaml specify the bpe model of text data", }, ) text_maxtokens_ratio: Optional[float] = field( default=1.0, metadata={ "help": "for text, max_tokens = max_tokens * text_maxtokens_ratio / 320 ", }, ) prepend_tgt_lang_tag: bool = field( default=False, metadata={"help": "prepend tgt_lang_tag to replace "}, ) mask_text_ratio: Optional[float] = field( default=0.0, metadata={ "help": "mask_text_ratio, for paired data", }, ) truncate_mono_source: bool = field( default=True, metadata={"help": "truncate mono source-side examples that exceed max-positions"}, ) @dataclass class JointPretrainingConfig(FairseqDataclass): data: str = field( default=MISSING, metadata={"help": "path to speech data directory"} ) fine_tuning: bool = field( default=False, metadata={"help": "set to true if fine-tuning Hubert"} ) labels: List[str] = field( default_factory=lambda: ["ltr"], metadata={ "help": ( "extension of the label files to load, frame-level labels for" " pre-training, and sequence-level label for fine-tuning" ) }, ) label_dir: Optional[str] = field( default=None, metadata={ "help": "if set, looks for labels in this directory instead", }, ) label_rate: int = field( default=-1, metadata={"help": "label frame rate. -1 for sequence label"}, ) sample_rate: int = field( default=16_000, metadata={ "help": "target sample rate. audio files will be up/down " "sampled to this rate" }, ) normalize: bool = field( default=False, metadata={ "help": "if set, normalizes input to have 0 mean and unit variance" }, ) enable_padding: bool = field( default=False, metadata={"help": "pad shorter samples instead of cropping"}, ) max_keep_size: Optional[int] = field( default=None, metadata={"help": "exclude sample longer than this"}, ) max_sample_size: Optional[int] = field( default=None, metadata={"help": "max sample size to crop to for batching"}, ) min_sample_size: Optional[int] = field( default=None, metadata={"help": "min sample size to crop to for batching"}, ) single_target: Optional[bool] = field( default=False, metadata={ "help": "if set, AddTargetDatasets outputs same keys " "as AddTargetDataset" }, ) random_crop: Optional[bool] = field( default=True, metadata={"help": "always crop from the beginning if false"}, ) pad_audio: Optional[bool] = field( default=False, metadata={"help": "pad audio to the longest one in the batch if true"}, ) store_labels: Optional[bool] = field( default=True, metadata={"help": "store spm labels in memory, should be true when fine-tune with bpe"}, ) add_decoder_target: bool = field( default=False, metadata={"help": "contral the model architecture, if set True, load reduced unit as target"}, ) split_modality_batch: bool = field( default=False, metadata={"help": "whether create all samples of different modalities in a batch"}, ) speech_tgt_lang: str = field( default="", metadata={"help": "prepend to prev_output_tokens to replace , only used for decoder"}, ) speech_sampling_alpha: float = field( default=0.2, metadata={ "help": "Hyper-parameter alpha = 1/T for temperature-based speech resampling." "(alpha = 1 for no resampling)" }, ) text_sampling_alpha: float = field( default=0.2, metadata={ "help": "Hyper-parameter alpha = 1/T for temperature-based text resampling." "(alpha = 1 for no resampling)" }, ) hubert_tokenizer: Optional[TOKENIZER_CHOICES] = field( default="none", metadata={"help": "which tokenizer for processing text"}, ) sp_path: Optional[str] = field( default=None, metadata={"help": "sentencepiece model path if using bpe tokenizer"}, ) text_cfg: TextPretrainingConfig = TextPretrainingConfig() @register_task("joint_sc2t_pretraining", dataclass=JointPretrainingConfig) class Jsc2tPretrainingTask(FairseqTask): cfg: JointPretrainingConfig def __init__( self, cfg: JointPretrainingConfig, ) -> None: super().__init__(cfg) logger.info(f"current directory is {os.getcwd()}") logger.info(f"JSTPretrainingTask Config {cfg}") self.cfg = cfg self.fine_tuning = cfg.fine_tuning self.blank_symbol = "" self.state.add_factory("hubert_tokenizer", self.build_tokenizer) if self.cfg.text_cfg.text_data is not None and os.path.exists(self.cfg.text_cfg.text_data): self.state.add_factory("text_dictionary", self.load_text_dictionary) self.state.add_factory("text_src_dictionary", self.load_text_src_dictionary) if cfg.fine_tuning: self.state.add_factory("target_dictionary", self.load_dictionaries) else: self.state.add_factory("dictionaries", self.load_dictionaries) if cfg.text_cfg.data_config is not None: self.text_data_cfg = S2TJointDataConfig(Path(f"{cfg.text_cfg.text_data}/{cfg.text_cfg.data_config}")) self.cfg.text_cfg.bpe = self.text_data_cfg.bpe_tokenizer["bpe"] else: self.text_data_cfg = None @property def source_dictionary(self) -> Optional[Dictionary]: return None @property def target_dictionary(self) -> Optional[Dictionary]: return self.state.target_dictionary @property def dictionaries(self) -> List[Dictionary]: return self.state.dictionaries @property def text_dictionary(self) -> Optional[Dictionary]: return self.state.text_dictionary @property def text_src_dictionary(self) -> Optional[Dictionary]: return self.state.text_src_dictionary @property def hubert_tokenizer(self): return self.state.hubert_tokenizer def load_dictionaries(self): label_dir = self.cfg.data if self.cfg.label_dir is None else self.cfg.label_dir dictionaries = [Dictionary.load(f"{label_dir}/dict.{label}.txt") for label in self.cfg.labels] if not self.cfg.fine_tuning: for dictionary in dictionaries: dictionary.add_symbol("") return dictionaries[0] if self.cfg.fine_tuning else dictionaries def load_text_dictionary(self): tgt_dict_path = f"{self.cfg.text_cfg.text_data}/{self.text_data_cfg.vocab_filename if self.text_data_cfg is not None else 'dict.txt'}" if not os.path.isfile(tgt_dict_path): raise FileNotFoundError(f"Dict not found: {tgt_dict_path}") text_dictionary = Dictionary.load(tgt_dict_path) self.mask_idx = text_dictionary.add_symbol("") return text_dictionary def load_text_src_dictionary(self): src_dict_path = f"{self.cfg.text_cfg.text_data}/{self.text_data_cfg.src_vocab_filename if self.text_data_cfg is not None else 'dict.txt'}" if not os.path.isfile(src_dict_path): raise FileNotFoundError(f"Dict not found: {src_dict_path}") src_text_dictionary = Dictionary.load(src_dict_path) self.mask_idx = src_text_dictionary.add_symbol("") return src_text_dictionary @classmethod def setup_task( cls, cfg: JointPretrainingConfig, **kwargs ) -> "Jsc2tPretrainingTask": return cls(cfg) def get_label_dir(self) -> str: if self.cfg.label_dir is None: return self.cfg.data return self.cfg.label_dir def load_paired_dataset(self, text_split, truncate_source=False): text_split, lp = text_split.rsplit('.', 1) # e.g. "libritext.ltr-ltr" if len(lp.split("-")) == 2: src, tgt = lp.split("-") if src == tgt: logger.warn(f"| trying to load monolingual dataset {text_split}.{lp}, please check your task is right.") paired_dataset = self.load_char_bart_dataset(f"{text_split}.{lp}.{tgt}") return paired_dataset paired_dataset = load_langpair_dataset( self.cfg.text_cfg.text_data, text_split, src, self.text_src_dictionary, tgt, self.text_dictionary, combine=True, dataset_impl=None, upsample_primary=1, left_pad_source=False, left_pad_target=False, max_source_positions=self.cfg.text_cfg.tokens_per_sample, max_target_positions=self.cfg.text_cfg.tokens_per_sample, truncate_source=truncate_source, prepend_bos=False, load_alignments=False, append_source_id=True if self.cfg.text_cfg.prepend_tgt_lang_tag else False, lang_format="" if self.cfg.text_cfg.prepend_tgt_lang_tag else "[{}]", input_feeding=self.cfg.add_decoder_target, ) if self.cfg.text_cfg.mask_text_ratio > 0: # add mask self.mask_idx = self.text_src_dictionary.index("") mask_whole_words = None if self.cfg.text_cfg.mask_whole_words: mask_whole_words = get_whole_word_mask(self.cfg.text_cfg, self.text_src_dictionary) elif self.cfg.text_cfg.mask_repeative_tokens: mask_whole_words = get_repeative_start src_dataset, src_unmasked_dataset = MaskTokensDataset.apply_mask( paired_dataset.src, self.text_src_dictionary, pad_idx=self.text_src_dictionary.pad(), mask_idx=self.mask_idx, seed=self.cfg.text_cfg.seed, mask_prob=self.cfg.text_cfg.mask_text_ratio, leave_unmasked_prob=self.cfg.text_cfg.leave_unmasked_prob, random_token_prob=self.cfg.text_cfg.mask_random, freq_weighted_replacement=self.cfg.text_cfg.freq_weighted_replacement, mask_whole_words=mask_whole_words, mask_multiple_length=self.cfg.text_cfg.mask_multiple_length, mask_stdev=self.cfg.text_cfg.mask_stdev, ) tgt_dataset = paired_dataset.tgt if paired_dataset.tgt is not None else src_unmasked_dataset paired_dataset = LanguageTripleDataset( src_dataset, src_dataset.sizes, self.text_src_dictionary, src_unmasked_dataset, src_unmasked_dataset.sizes, self.text_src_dictionary, tgt_dataset, tgt_dataset.sizes, self.text_dictionary, left_pad_source=False, left_pad_target=False, align_dataset=None, eos=None, num_buckets=0, shuffle=True, pad_to_multiple=1, ) else: src, ref, tgt = lp.split("-") paired_dataset = load_langtriple_dataset( self.cfg.text_cfg.text_data, text_split, src, self.text_src_dictionary, ref, self.dictionaries[-1], tgt, self.text_dictionary, combine=True, dataset_impl=None, upsample_primary=1, left_pad_source=False, left_pad_target=False, max_source_positions=self.cfg.text_cfg.tokens_per_sample, max_target_positions=self.cfg.text_cfg.tokens_per_sample, truncate_source=truncate_source, prepend_bos=False, load_alignments=False, append_source_id=True if self.cfg.text_cfg.prepend_tgt_lang_tag else False, lang_format="" if self.cfg.text_cfg.prepend_tgt_lang_tag else "[{}]", ) return paired_dataset def load_dataset(self, split: str, epoch=1, **kwargs) -> None: """ Create Wav dataset for audio, and Index dataset for phonemized text, then concatenate them to by fairseq.data.multi_corpus_dataset.MultiCorpusDataset. """ speech_splits = split.split('+')[0].split(',') ### 1st, create a speech dataset using STSpeechDataset (modified from HubertDataset) dicts = [self.target_dictionary] if self.cfg.fine_tuning else self.dictionaries pad_list = [dict.pad() for dict in dicts] eos_list = [dict.eos() for dict in dicts] procs = [LabelEncoder(dict) for dict in dicts] if self.cfg.speech_tgt_lang != "": tgt_lang_idx = _lang_token_index(dicts[0], self.cfg.speech_tgt_lang) logger.info(f"Will prepend <{tgt_lang_idx}> at the beginning of prev_output_tokens to replace ") else: tgt_lang_idx = None # hubert v1: pad_audio=True, random_crop=False; speech_datasets = [] for speech_split in speech_splits: paths = [ f"{self.get_label_dir()}/{speech_split}.{l}" for l in self.cfg.labels ] speech_datasets.append( HubertDataset( f"{self.cfg.data}/{speech_split}.tsv", sample_rate=self.cfg.sample_rate, label_paths=paths, label_rates=self.cfg.label_rate, pad_list=pad_list, eos_list=eos_list, label_processors=procs, max_keep_sample_size=self.cfg.max_keep_size, min_keep_sample_size=self.cfg.min_sample_size, max_sample_size=self.cfg.max_sample_size, pad_audio=self.cfg.pad_audio, normalize=self.cfg.normalize, store_labels=self.cfg.store_labels, random_crop=self.cfg.random_crop, single_target=self.cfg.single_target, tgt_dict=dicts[0], add_decoder_target=self.cfg.add_decoder_target, fine_tuning=self.cfg.fine_tuning, tgt_lang_idx=tgt_lang_idx, tokenizer=self.hubert_tokenizer, ) ) if len(speech_datasets) > 1: speech_dataset = ConcatDataset(speech_datasets) else: speech_dataset = speech_datasets[0] has_text = len(split.split('+')) > 1 if not has_text: assert speech_dataset is not None self.datasets[split] = speech_dataset return ### 2nd, create paired/mono text datasets using Langpairdataset if split.split('+')[1] != '': paired_splits = [paired_split for paired_split in split.split('+')[1].split(',') if paired_split != ''] paired_datasets = [self.load_paired_dataset(paired_split) for paired_split in paired_splits] else: paired_splits, paired_datasets = [], [] if len(split.split('+')) > 2 and split.split('+')[2] != '': mono_splits = [mono_split for mono_split in split.split('+')[2].split(',') if mono_split != ''] mono_datasets = [self.load_paired_dataset(mono_split, truncate_source=self.cfg.text_cfg.truncate_mono_source) for mono_split in mono_splits] else: mono_splits, mono_datasets = [], [] assert len(mono_datasets + paired_datasets) > 0, f"split {split} has no text! you should check out for that" ### 3rd, if provided, create a supervised dataset with labeled data if len(split.split('+')) > 3 and split.split('+')[3] != '': assert len(paired_splits) > 0, f"supervised dataset can not be loaded without text paired dataset!" tgt = paired_splits[0].rsplit('.', 1)[1].split("-")[1] sup_split = split.split('+')[3] sup_dataset = HubertDataset( f"{self.cfg.data}/{sup_split}.tsv", sample_rate=self.cfg.sample_rate, label_paths=[f"{self.get_label_dir()}/{sup_split}.{tgt}"], label_rates=[-1], pad_list=[self.text_dictionary.pad()], eos_list=[self.text_dictionary.eos()], label_processors=[LabelEncoder(self.text_dictionary)], max_keep_sample_size=self.cfg.max_keep_size, min_keep_sample_size=None, max_sample_size=None, pad_audio=True, normalize=self.cfg.normalize, store_labels=self.cfg.store_labels, random_crop=False, single_target=True, tgt_dict=self.text_dictionary, add_decoder_target=self.cfg.add_decoder_target, fine_tuning=True, tgt_lang_idx=None, tokenizer=None, ) else: sup_dataset = None ### 4th, compose a MultiCorpusDataset dataset_dict, max_positions_dict, distributions, max_tokens_ratios = self.resample_multi_modality_dataset( speech_dataset, sup_dataset, mono_datasets, paired_datasets, mono_splits, paired_splits, epoch=epoch, ) self.datasets[split] = MultiCorpusDataset( dataset_dict, max_positions=max_positions_dict, distribution=distributions, max_tokens_ratio=max_tokens_ratios, seed=self.cfg.text_cfg.seed, sort_indices=True, ) def max_positions(self) -> Tuple[int, int]: return (sys.maxsize, sys.maxsize) def filter_indices_by_size( self, indices: np.array, *args, **kwargs ) -> np.array: return indices def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, data_buffer_size=0, disable_iterator_cache=False, skip_remainder_batch=False, grouped_shuffling=False, update_epoch_batch_itr=False, ): """ Get an iterator that yields batches of data from the given dataset. Args: dataset (~fairseq.data.FairseqDataset): dataset to batch max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). max_positions (optional): max sentence length supported by the model (default: None). ignore_invalid_inputs (bool, optional): don't raise Exception for sentences that are too long (default: False). required_batch_size_multiple (int, optional): require batch size to be a multiple of N (default: 1). seed (int, optional): seed for random number generator for reproducibility (default: 1). num_shards (int, optional): shard the data iterator into N shards (default: 1). shard_id (int, optional): which shard of the data iterator to return (default: 0). num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 1). data_buffer_size (int, optional): number of batches to preload (default: 0). disable_iterator_cache (bool, optional): don't cache the EpochBatchIterator (ignores `FairseqTask::can_reuse_epoch_itr`) (default: False). skip_remainder_batch (bool, optional): if set, discard the last batch in each training epoch, as the last batch is often smaller than local_batch_size * distributed_word_size (default: ``True``). grouped_shuffling (bool, optional): group batches with each groups containing num_shards batches and shuffle groups. Reduces difference between sequence lengths among workers for batches sorted by length. update_epoch_batch_itr (bool optional): if true then donot use the cached batch iterator for the epoch Returns: ~fairseq.iterators.EpochBatchIterator: a batched iterator over the given dataset split """ if self.fine_tuning or not isinstance(dataset, MultiCorpusDataset): return super().get_batch_iterator( dataset, max_tokens=max_tokens, max_sentences=max_sentences, max_positions=max_positions, ignore_invalid_inputs=ignore_invalid_inputs, required_batch_size_multiple=required_batch_size_multiple, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, epoch=epoch, data_buffer_size=data_buffer_size, disable_iterator_cache=disable_iterator_cache, skip_remainder_batch=skip_remainder_batch, grouped_shuffling=grouped_shuffling, update_epoch_batch_itr=update_epoch_batch_itr, ) can_reuse_epoch_itr = ( not disable_iterator_cache and not update_epoch_batch_itr and self.can_reuse_epoch_itr(dataset) ) if can_reuse_epoch_itr and dataset in self.dataset_to_epoch_iter: logger.debug("reusing EpochBatchIterator for epoch {}".format(epoch)) return self.dataset_to_epoch_iter[dataset] assert isinstance(dataset, FairseqDataset) # initialize the dataset with the correct starting epoch dataset.set_epoch(epoch) # get indices ordered by example size with data_utils.numpy_seed(seed): indices = dataset.ordered_indices() # filter examples that are too large if max_positions is not None: indices = self.filter_indices_by_size( indices, dataset, max_positions, ignore_invalid_inputs ) # create mini-batches with given size constraints batch_sampler = dataset.get_batch_sampler( indices, num_shards, seed, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, split_modality_batch=self.cfg.split_modality_batch, ) # return a reusable, sharded iterator epoch_iter = iterators.EpochBatchIterator( dataset=dataset, collate_fn=dataset.collater, batch_sampler=batch_sampler, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, epoch=epoch, buffer_size=data_buffer_size, skip_remainder_batch=skip_remainder_batch, disable_shuffling=True, grouped_shuffling=grouped_shuffling, ) if can_reuse_epoch_itr: self.dataset_to_epoch_iter[dataset] = epoch_iter return epoch_iter @classmethod def _get_size_ratios(cls, ids: List[str], sizes: List[int], alpha: float = 1.0): """Size ratios for temperature-based sampling (https://arxiv.org/abs/1907.05019)""" _sizes = np.array(sizes) prob = _sizes / _sizes.sum() smoothed_prob = prob ** alpha smoothed_prob = smoothed_prob / smoothed_prob.sum() size_ratio = (smoothed_prob * _sizes.sum()) / _sizes o_str = str({_i: f"{prob[i]:.3f}" for i, _i in enumerate(ids)}) logger.info(f"original sampling probability: {o_str}") p_str = str({_i: f"{smoothed_prob[i]:.3f}" for i, _i in enumerate(ids)}) logger.info(f"balanced sampling probability: {p_str}") sr_str = str({_id: f"{size_ratio[i]:.3f}" for i, _id in enumerate(ids)}) logger.info(f"balanced sampling size ratio: {sr_str}") return size_ratio.tolist() def resample_multi_modality_dataset(self, speech_dataset, sup_dataset, mono_datasets, paired_datasets, mono_splits, paired_splits, epoch=1, train=True): assert len(mono_datasets+paired_datasets) > 0, f"No text data loaded!" if len(mono_datasets) > 1 and self.cfg.text_sampling_alpha != 1.0: size_ratios = self._get_size_ratios( mono_splits, [len(s) for s in mono_datasets], alpha=self.cfg.text_sampling_alpha ) mono_datasets = [ ResamplingDataset( d, size_ratio=r, seed=0, epoch=epoch, replace=(r >= 1.0) ) for d, r in zip(mono_datasets, size_ratios) ] if len(paired_datasets) > 1 and self.cfg.text_sampling_alpha != 1.0: size_ratios = self._get_size_ratios( paired_splits, [len(s) for s in paired_datasets], alpha=self.cfg.text_sampling_alpha ) paired_datasets = [ ResamplingDataset( d, size_ratio=r, seed=0, epoch=epoch, replace=(r >= 1.0) ) for d, r in zip(paired_datasets, size_ratios) ] dataset_list = [speech_dataset, sup_dataset] for datasets in [mono_datasets, paired_datasets]: if len(datasets) > 1: dataset_list.append(ConcatDataset(datasets)) elif len(datasets) == 1: dataset_list.append(datasets[0]) else: dataset_list.append(None) ### match speech/text datasets according to modality dataset_dict = OrderedDict((name, d) for name, d in zip(["speech", "speech_sup", "text_mono", "text_paired"], dataset_list) if d is not None) max_positions_dict = { "speech": None, "speech_sup": None, "text_mono": (self.cfg.text_cfg.tokens_per_sample, self.cfg.text_cfg.tokens_per_sample), "text_paired": (self.cfg.text_cfg.tokens_per_sample, self.cfg.text_cfg.tokens_per_sample), } max_positions_dict = OrderedDict((name, max_positions_dict[name]) for name in dataset_dict.keys()) max_tokens_ratios_dict = { "speech": 1.0, "speech_sup": 1.0, "text_mono": 1.0 / 320 / self.cfg.text_cfg.text_maxtokens_ratio, "text_paired": 1.0 / 320 / self.cfg.text_cfg.text_maxtokens_ratio, } max_tokens_ratios = [max_tokens_ratios_dict[name] for name in dataset_dict.keys()] dataset_lens = np.array([len(dataset) for dataset in dataset_dict.values()]) dataset_avg_sample_lens = np.array([ sum([dataset.num_tokens(i) for i in np.random.randint(low=0, high=len(dataset), size=10000)]) / 10000.0 for dataset in dataset_dict.values() ]) if not "speech" in dataset_dict: distributions = [l / sum(dataset_lens) for l in dataset_lens] else: ## we just keep the batches of speech and non-speech the same, expand_coef is to ensure speech batches is less than others first_ratio = dataset_lens[0] / sum(dataset_lens) expand_coef = 1.8 if sup_dataset is None else 1.1 * sum(dataset_lens[0:2]) / dataset_lens[0] distributions = [expand_coef * max_tokens_ratios[i] * dataset_avg_sample_lens[0] / l for (i, l) in enumerate(dataset_avg_sample_lens)] distributions[0] = 1.0 if sup_dataset is not None: distributions[1] = dataset_lens[1] / dataset_lens[0] distributions = [first_ratio * d for d in distributions] logging.info(f"Number samples of datasets is {dataset_lens}") logging.info(f"Avg sample length of datasets is {dataset_avg_sample_lens}") logging.info(f"Sampling distributions is {distributions}") logging.info(f"Maxtokens ratio is {max_tokens_ratios}") return dataset_dict, max_positions_dict, distributions, max_tokens_ratios def build_tokenizer(self, cfg=None): logger.info(f"tokenizer: {self.cfg.hubert_tokenizer}") if self.cfg.hubert_tokenizer != "none": return encoders.build_bpe(Namespace(**{"bpe": self.cfg.hubert_tokenizer, "sentencepiece_model": self.cfg.sp_path})) else: return None def load_char_bart_dataset(self, split): mono_dataset = data_utils.load_indexed_dataset( f"{self.cfg.text_cfg.text_data}/{split}", self.text_dictionary, ) mono_dataset = StripTokenDataset(mono_dataset, self.text_dictionary.eos()) mono_dataset = maybe_shorten_dataset( mono_dataset, split, self.cfg.text_cfg.shorten_data_split_list, self.cfg.text_cfg.shorten_method, self.cfg.text_cfg.tokens_per_sample - 2, self.cfg.text_cfg.seed, ) logger.info("loaded {} samples from: {}".format(len(mono_dataset), mono_dataset)) ### prepend bos and eos to dataset mono_dataset = PrependTokenDataset(mono_dataset, self.text_dictionary.bos()) mono_dataset = AppendTokenDataset(mono_dataset, self.text_dictionary.eos()) mask_whole_words = ( get_whole_word_mask(None, self.text_dictionary) if self.cfg.text_cfg.mask_whole_words else None ) lang=self.cfg.speech_tgt_lang mono_dataset = DenoisingDataset( mono_dataset, mono_dataset.sizes, self.text_dictionary, self.mask_idx, mask_whole_words, shuffle=self.cfg.text_cfg.shuffle_instance, seed=self.cfg.text_cfg.seed, args=self.cfg.text_cfg, tgt_lang_idx=_lang_token_index(self.text_dictionary, lang) if self.cfg.text_cfg.prepend_tgt_lang_tag else None, ) return mono_dataset